【题目】如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.
(1)求证:CD与⊙O相切;
(2)若菱形ABCD的边长为2,∠ABC=60°,求⊙O的半径.
【答案】(1)详见解析;(2)⊙O的半径为﹣6+4.
【解析】
(1)连接OM,过点O作ON⊥CD于N.只要证明OM=ON即可解决问题;
(2)设半径为r,则OC=2-r,OM=r,利用勾股定理构建方程即可解决问题
(1)连接OM,过点O作ON⊥CD于N,
∵⊙O与BC相切于点M,
∴OM⊥BC,OM是⊙O的半径,
∵AC是菱形ABCD的对角线,
∴AC平分∠BCD,
∵ON⊥CD,OM⊥BC,
∴ON=OM=r,
∴CD与⊙O相切;
(2)∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ACB是等边三角形,
∴AC=AB=2,
设半径为r.则OC=2﹣r,OM=r,
∵∠ACB=60°,∠OMC=90°,
∴∠COM=30°,MC=,
在Rt△OMC中,∠OMC=90°,
∵OM2+CM2=OC2,
∴r2+()2=(2﹣r)2,
解得r=﹣6+4或﹣6﹣4(舍弃),
∴⊙O的半径为﹣6+4.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MAN=30°,O为边AN上一点,以点O为圆心,2为半径作⊙O,交AN于D,E两点,设AD=x.
(1)如图①,当x取何值时,⊙O与AM相切?
(2)如图②,当x为何值时,⊙O与AM相交于B,C两点,且∠BOC=90°?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和方块1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.
(1)求二次函数的表达式;
(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;
(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】凤城商场经销一种高档水果,售价为每千克50元
(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;
(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.
(1)求证:CD与⊙O相切;
(2)若菱形ABCD的边长为2,∠ABC=60°,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连结PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC外切于⊙O,切点分别为点D,E,F,∠A=60°,BC=7,⊙O的半径为.求:(1)求BF+CE的值; (2)求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com