分析:(1)对同类项合并进行化简.
(2)先合并同类项化成最简式,然后求解.
(3)根据已知方程得到x,y的值.然后通过合并同类项将整式化简成最简式代入x,y的值求解.
解答:解:(1)原式=4x
2-2x-1-{5x
2-[8x-2-3x
2-3x]-x
2}=4x
2-2x-1-{5x
2-8x+2+3x
2+3x-x
2}=4x
2-2x-1-5x
2+8x-2-3x
2-3x+x
2=-3x
2+3x-3
(2)原式=5abc-{2a
2b-[3abc-4ab
2+a
2b]}+3ab
2=5abc-{2a
2b-3abc+4ab
2-a
2b}+3ab
2=5abc-2a
2b+3abc-4ab
2+a
2b+3ab
2=8abc-a
2b-ab
2;将a,b,c的值代入得:原式=
(3)根据题意得,(x-2)
2+|xy-4|=0则,(x-2)
2=0,|xy-4|=0解得:x=2,y=2
原式=3x
2y+{-2x
2y-[-2xy+(x
2y-4x
2)-xy]+xy
2}=3x
2y+{-2x
2y-[-2xy+x
2y-4x
2-xy]+xy
2}=3x
2y+{-2x
2y+2xy-x
2y+4x
2+xy+xy
2}=3x
2y-2x
2y+2xy-x
2y+4x
2+xy+xy
2=4x
2+3xy+xy
2
将x=2,y=2代入得:原式=36
点评:对整式的化简首先去括号,同时含有小括号,中括号,大括号的从里往外一层一层去括号.在去括号时应注意去掉括号后单项式应变换符合.去完括号对整式进行合并同类项来化简.