精英家教网 > 初中数学 > 题目详情
18.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(-1,1),C(-2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).

分析 由平移的性质和旋转的性质作出图形,即可得出答案.

解答 解:如图所示:
∵A(0,4),B(-1,1),C(-2,2),将△ABC向右平移4个单位,得到△A′B′C′,
∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),
再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,
则点A″的坐标为 (6,0);
故答案为:(6,0).

点评 本题考查了坐标与图形性质、平移的性质、旋转的性质;熟练掌握平移和旋转的性质是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.某工厂有甲、乙两个长方体的水池,甲水池较深,甲池的水用抽水机匀速地抽入乙池,如图所示的是甲、乙两个水池水的深度y(m)与抽水时间t(h)的函数关系的图象.
(1)甲水池原水深4m,乙水池原水深1m;
(2)抽水4h后,两水池的水深相同,这时水深为2m;
(3)求甲、乙两水池水的深度y(m)与抽水时间t(h)的函数解析式(不必写出自变量t的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.温州市政府计划投资百亿元开发瓯江口新区,打造出一个“东方时尚岛、海上新温州”.为了解温州市民对瓯江口新区的关注情况,某学校数学兴趣小组随机采访部分温州市民,对采访情况制作了统计图表的一部分如下:
关注情况频数频率
A.高度关注m0.1
B.一般关注1000.5
C.不关注30n
D.不知道500.25
(1)根据上述统计表可得此次采访的人数为200人;m=20,n=0.15;
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,估计25000名温州市民中高度关注瓯江口新区的市民约2500人.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,二次函数y=x2+(m-3)x-3m(0<m<3)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,若∠ABC=45°,
(1)求点B的坐标和m的值;
(2)已知一次函数y=kx+b,若只有当-2<x<2时,x2+(m-3)x-3m<kx+b,求这个一次函数的解析式.
(3)设P是一次函数图象上任意一点、Q是抛物线上任意一点,是否存在P、Q两点,使以B、C、P、Q为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.甲、乙两人匀速从同一地点到1500m处的图书馆看书,甲出发5min后乙以一定的速度沿同一路线行走.设甲、乙两人相距s(m),甲行走的时间为t(min),s为t的函数,其图象的一部分如图所示.
(1)求甲行走的速度;
(2)请问:当甲出发多少分钟时,甲、乙两人相距360m?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在平面直角坐标系中,点(3,-2)关于原点对称的点是(  )
A.(-3,2)B.(-3,-2)C.(3,-2)D.(3,2)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为4元.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.盒中有x枚黑色棋子和y枚白色棋子,这些棋子除颜色外无其他差别.若从盒中随机取出一枚棋子,则它是黑色棋子的概率是$\frac{3}{8}$;若往盒中再放进10枚黑色棋子,则取得黑色棋子的概率变为$\frac{1}{2}$,则x+y的值是(  )
A.38B.40C.42D.30

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是(  )
A.43°B.35°C.34°D.44°

查看答案和解析>>

同步练习册答案