精英家教网 > 初中数学 > 题目详情
在如图所示的单位正方形网格中,每个小正方形的边长是a,
(1)请求出△ABC的面积(用含a的代数式表示);
(2)当a=5时,求△ABC的面积.
分析:(1)△ABC的面积=边长为6a,3a的长方形的面积-直角边长为a、4a的三角形的面积-直角边长为2a、3a的三角形的面积-直角边长为2a、6a的三角形的面积;
(2)把a=5代入(1)得到的代数式求值即可.
解答:解:(1)△ABC的面积=6a×3a-
1
2
×a×4a-
1
2
×2a×3a-
1
2
×2a×6a
=18a2-2a2-3a2-6a2
=7a2

(2)当a=5时,7a2=7×52=7×25=175.
点评:考查列代数式及代数式求值问题;得到△ABC的面积的关系式是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
AB
(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为|
AB
|.显然,有向线段
AB
和有向线段
BA
长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
OP
,其方向与x轴正方向相同,长度(或模)是|
OP
|=3.
问题:
(1)在如图所示的平面直角坐标系中画出
OA
有向线段,使得
OA
=3
2
OA
与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段
OB
的终点B的坐标为(3,
3
),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,|
MA
|+|
AP
|=|
MP
|
成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

△ABC是顶点在如图所示的方格纸中的格点上的三角形.
(1)在这个方格纸中,把△ABC向上平移5格,得△A1B1C1,再将△A1B1C1绕点C1按顺时针方向旋转180°得△A2B2C1,请在方格纸中画出△A1B1C1和△A2B2C1
(2)若以点B为坐标原点,BC为x轴的正方向建立直角坐标系(方格纸中一个小正方形的边长为1个单位长),画出这个坐标系,写出第一次变换后所得△A1B1C1的各顶点和第二次变换后所得△A2B2C1的各顶点的坐标;并求A点经过2次变换后到达点A2所经过路径长度是多少个单位长?

查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》中考题集(30):1.3 解直角三角形(解析版) 题型:解答题

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为||.显然,有向线段和有向线段长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段,其方向与x轴正方向相同,长度(或模)是||=3.
问题:
(1)在如图所示的平面直角坐标系中画出有向线段,使得=3与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段的终点B的坐标为(3,),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)

查看答案和解析>>

科目:初中数学 来源:第28章《锐角三角函数》中考题集(32):28.2 解直角三角形(解析版) 题型:解答题

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为||.显然,有向线段和有向线段长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段,其方向与x轴正方向相同,长度(或模)是||=3.
问题:
(1)在如图所示的平面直角坐标系中画出有向线段,使得=3与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段的终点B的坐标为(3,),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)

查看答案和解析>>

科目:初中数学 来源:第25章《解直角三角形》中考题集(26):25.3 解直角三角形及其应用(解析版) 题型:解答题

先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为||.显然,有向线段和有向线段长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段,其方向与x轴正方向相同,长度(或模)是||=3.
问题:
(1)在如图所示的平面直角坐标系中画出有向线段,使得=3与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段的终点B的坐标为(3,),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)

查看答案和解析>>

同步练习册答案