精英家教网 > 初中数学 > 题目详情
2.如图,为了测得铁塔的高度,小莹利用自制的测角仪,在C点测得塔顶E的仰角为45°,在D点测得塔顶E的仰角为60°,已知测角仪AC的高为1.6米,CD的长为6米,CD所在的水平线CG⊥EF于点G,铁塔EF的高为(10.6+3$\sqrt{3}$)米.(结果用带根号的式子表示)

分析 根据已知得出EG=CG,进而求出CD+DG=EG,再利用测角仪AC的高为1.6m,求出铁塔EF的高即可.

解答 解:设DG=x,得出EG=$\sqrt{3}$x,
∵∠ECG=45°,∠CGE=90°,
∴∠CEG=45°,
∴EG=CG,
∴CD+DG=EG,
∴6+x=$\sqrt{3}$x,
解得:x=3$\sqrt{3}$+3,
∴$\sqrt{3}$×(3$\sqrt{3}$+3)=(9+3$\sqrt{3}$)米,
∴EF=9+3$\sqrt{3}$+1.6=(10.6+3$\sqrt{3}$)米.
故答案为:(10.6+3$\sqrt{3}$)米.

点评 此题主要考查了解直角三角形的应用-仰角俯角问题的应用,根据已知得出EG的长是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,?ABCD的面积为72cm2,P为?ABCD内部的任意一点,则图中阴影部分的面积之和为36cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)实数a、b在数轴上的位置如图所示,请化简:|a|-$\sqrt{a^2}-\sqrt{b^2}$;
(2)利用不等式性质将6x+5<4x-3化为x>a或或x<a的形式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,每个小方格都是边长为1个单位长度的小正方形.
(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2
(3)观察探究:△A2B2C2.可以由怎样的图形变换得到△A1B1C1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在△ABC中,AB=AC,O是BC中点,BC=12$\sqrt{3}$cm,AB与⊙O相切于点D,AD:DB=1:3
(1)求证:AC是⊙O的切线;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,点D、E从点C同时出发,分别以1cm/s和2cm/s的速度沿着射线CB向右移动,以DE为一边在直线BC的上方作等边△DEF,连接CF,设点D、E运动的时间为t秒.
(1)当t为何值时,点F落在边AB上?
(2)t为何值时,以点A为圆心,AF为半径的圆与△CDF的边所在的直线相切?
(3)设点F关于直线AB的对称点为G,在△DEF运动过程中,是否存在某一时刻t,使得以A、C、E、G为顶点的四边形为梯形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,边长为6$\sqrt{2}$的正方形ABCD的对角线相交于O,点E从B点出发,在BD上以每秒2个单位的速度向D运动,同时点F从O点出发,在OC上以每秒1个单位的速度向C运动,运动的时间为t,(0<t<6)

(1)当t=$\frac{36±6\sqrt{3}}{11}$时,∠FEO=60°.
(2)如图2,当0<t<3时,取BE的中点M,连FM、AE,求证:∠OAE+∠OMF为定值.
(3)如图3,取AB的中点N,当t=$\frac{-3+\sqrt{153}}{4}$时,F、E、N三点在同一条直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.
(1)求购买一个足球,一个篮球分别需要多少元?
(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在半径为4的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若四边形AOBC的面积为10,则△DOE的面积是$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案