9£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìx2-£¨2k+3£©x+k2+3k+2=0
£¨1£©ÊÔÅжÏÉÏÊö·½³Ì¸ùµÄÇé¿ö£®
£¨2£©ÈôÒÔÉÏÊö·½³ÌµÄÁ½¸ö¸ùΪºá×ø±ê¡¢×Ý×ø±êµÄµãÇ¡ÔÚ·´±ÈÀýº¯Êýy=$\frac{m}{x}$µÄͼÏóÉÏ£¬ÇóÂú×ãÌõ¼þµÄmµÄ×îСֵ£®
£¨3£©ÒÑÖª¡÷ABCµÄÁ½±ßAB¡¢ACµÄ³¤ÊǹØÓÚÉÏÊö·½³ÌµÄÁ½¸öʵÊý¸ù£¬BCµÄ³¤Îª5£®
¢Ùµ±kΪºÎֵʱ£¬¡÷ABCÊÇÒÔBCΪб±ßµÄÖ±½ÇÈý½ÇÐΣ¿
¢Úµ±kΪºÎֵʱ£¬¡÷ABCÊǵÈÑüÈý½ÇÐΣ¿ÇëÇó³ö´Ëʱ¡÷ABCµÄÖܳ¤£®

·ÖÎö £¨1£©±íʾ³ö·½³Ì¸ùµÄÅбðʽ£¬¸ù¾Ý¸ùµÄÅбðʽµÄÕý¸º¼´¿ÉÈ·¶¨³ö·½³Ì¸ùµÄÇé¿ö£»
£¨2£©Éè·½³ÌµÄÁ½¸ùΪx1£¬x2£¬¸ù¾ÝÌâÒâµÃm=x1x2£¬ÔÙÀûÓøùÓëϵÊý¹Øϵ±íʾ³öx1x2£¬Áгöm¹ØÓÚkµÄ¶þ´Îº¯Êý½âÎöʽ£¬ÀûÓöþ´Îº¯ÊýÐÔÖÊÇó³ömµÄ×îСֵ¼´¿É£»
£¨3£©¢Ù±íʾ³ö·½³ÌµÄÁ½½â£¬¼´ÎªABÓëAC£¬ÀûÓù´¹É¶¨ÀíÁгö¹ØÓÚkµÄ·½³Ì£¬Çó³ö·½³ÌµÄ½â¼´¿ÉµÃµ½kµÄÖµ£»
¢ÚÓÉ£¨1£©µÃµ½AB¡ÙAC£¬·ÖAC=BCÓëAB=BCÁ½ÖÖÇé¿öÇó³ökµÄÖµ£¬²¢Çó³öÈý½ÇÐÎÖܳ¤¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉ·½³Ìx2-£¨2k+3£©x+k2+3k+2=0£¬µÃb2-4ac=£¨2k+3£©2-4£¨k2+3k+2£©=4k2+12k+9-4k2-12k-8=1£¾0£¬
Ôò·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£»
£¨2£©Éè·½³Ìx2-£¨2k+3£©x+k2+3k+2=0µÄÁ½¸ö¸ùΪx1£¬x2£¬¸ù¾ÝÌâÒâµÃm=x1x2£¬
ÓÖÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØϵµÃx1x2=k2+3k+2£¬
¡àm=k2+3k+2=£¨k+$\frac{3}{2}$£©2-$\frac{1}{4}$£¬
Ôòµ±k=-$\frac{3}{2}$ʱ£¬mÈ¡µÃ×îСֵ-$\frac{1}{4}$£»
£¨3£©¢Ùx1=k+1£¬x2=k+2£¬
²»·ÁÉèAB=k+1£¬AC=k+2£¬
µ±Ð±±ßBC=5ʱ£¬ÓÐAB2+AC2=BC2£¬¼´£¨k+1£©2+£¨k+2£©2=25£¬
½âµÃk1=2£¬k2=-5£¨ÉáÈ¥£©£¬
¡àµ±k=2ʱ£¬¡÷ABCÊÇÖ±½ÇÈý½ÇÐΣ»                                       
¢Úµ±AB=k+1£¬AC=k+2£¬BC=5£¬ÓÉ£¨1£©ÖªAB¡ÙAC£¬
¹ÊÓÐÁ½ÖÖÇé¿ö£º
£¨i£©µ±AC=BC=5ʱ£¬k+2=5£¬¼´k=3£¬´ËʱÈý½ÇÐÎÖܳ¤Îª4+5+5=14£»
£¨ii£©µ±AB=BC=5ʱ£¬k+1=5£¬¼´k=4£¬´ËʱÈý½ÇÐÎÖܳ¤Îª5+5+6=16£®

µãÆÀ ´ËÌâÊôÓÚ·´±ÈÀýº¯Êý×ÛºÏÌ⣬Éæ¼°µÄ֪ʶÓУºÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹Øϵ£¬¸ùµÄÇé¿öÅжϣ¬¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¹´¹É¶¨Àí£¬ÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐ˵·¨£º£¨1£©Âú×ãa+b£¾cµÄa¡¢b¡¢cÈýÌõÏ߶ÎÒ»¶¨ÄÜ×é³ÉÈý½ÇÐΣ»£¨2£©¹ýÈý½ÇÐÎÒ»¶¥µã×÷¶Ô±ßµÄ´¹Ïß½Ð×öÈý½ÇÐεĸߣ»£¨3£©Èý½ÇÐεÄÍâ½Ç´óÓÚËüµÄÈκÎÒ»¸öÄڽǣ»£¨4£©Á½ÌõÖ±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬Í¬Î»½ÇÏàµÈ£®ÆäÖдíÎóµÄÊÇ£¨¡¡¡¡£©¸ö£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èç¹û£¨a+1£©2+|b-2|=0£¬Çóa2010+£¨a+b£©2011µÄÖµÊÇ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔĶÁÏÂÁвÄÁÏ£º
С»ªÓöµ½ÕâÑùÒ»¸öÎÊÌ⣬Èçͼ1£¬¡÷ABCÖУ¬¡ÏACB=30¡ã£¬BC=6£¬AC=5£¬ÔÚ¡÷ABCÄÚ²¿ÓÐÒ»µãP£¬Á¬½ÓPA¡¢PB¡¢PC£¬ÇóPA+PB+PCµÄ×îСֵ£®
С»ªÊÇÕâÑù˼¿¼µÄ£ºÒª½â¾öÕâ¸öÎÊÌ⣬Ê×ÏÈÓ¦Ïë°ì·¨½«ÕâÈýÌõ¶ËµãÖغÏÓÚÒ»µãµÄÏ߶ηÖÀ룬ȻºóÔÙ½«ËüÃÇÁ¬½Ó³ÉÒ»ÌõÕÛÏߣ¬²¢ÈÃÕÛÏßµÄÁ½¸ö¶ËµãΪ¶¨µã£¬ÕâÑùÒÀ¾Ý¡°Á½µãÖ®¼ä£¬Ï߶Î×î¶Ì¡±£¬¾Í¿ÉÒÔÇó³öÕâÈýÌõÏ߶κ͵Ä×îСֵÁË£®ËûÏȺó³¢ÊÔÁË·­ÕÛ¡¢Ðýת¡¢Æ½ÒƵķ½·¨£¬·¢ÏÖͨ¹ýÐýת¿ÉÒÔ½â¾öÕâ¸öÎÊÌ⣮ËûµÄ×ö·¨ÊÇ£¬Èçͼ2£¬½«¡÷APCÈƵãC˳ʱÕëÐýת60¡ã£¬µÃµ½¡÷EDC£¬Á¬½ÓPD¡¢BE£¬ÔòBEµÄ³¤¼´ÎªËùÇó£®
£¨1£©ÇëÄãд³öͼ2ÖУ¬PA+PB+PCµÄ×îСֵΪ$\sqrt{61}$£»
£¨2£©²Î¿¼Ð¡»ªµÄ˼¿¼ÎÊÌâµÄ·½·¨£¬½â¾öÏÂÁÐÎÊÌ⣺
¢ÙÈçͼ3£¬ÁâÐÎABCDÖУ¬¡ÏABC=60¡ã£¬ÔÚÁâÐÎABCDÄÚ²¿ÓÐÒ»µãP£¬ÇëÔÚͼ3Öл­³ö²¢Ö¸Ã÷³¤¶ÈµÈÓÚPA+PB+PC×îСֵµÄÏ߶Σ¨±£Áô»­Í¼ºÛ¼££¬»­³öÒ»Ìõ¼´¿É£©£»
¢ÚÈô¢ÙÖÐÁâÐÎABCDµÄ±ß³¤Îª4£¬ÇëÖ±½Óд³öµ±PA+PB+PCÖµ×îСʱPBµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®°ÑÒ»Ôª¶þ´Î·½³Ì£¨x-3£©2=5»¯ÎªÒ»°ãÐÎʽΪx2-6x+4=0£¬¶þ´ÎÏîΪx2£¬Ò»´ÎÏîϵÊýΪ-6£¬³£ÊýÏîΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®°ÑÏÂÁи÷Êý·Ö±ðÌîÈëÏàÓ¦µÄ¼¯ºÏÀ
3£¬-7£¬-$\frac{2}{3}$£¬5.$\stackrel{•}{6}$£¬0£¬-8$\frac{1}{4}$£¬15£¬$\frac{1}{9}$
£¨1£©·ÖÊý¼¯ºÏ£º{-$\frac{2}{3}$£¬5.$\stackrel{•}{6}$£¬-8$\frac{1}{4}$£¬$\frac{1}{9}$¡­}    £¨2£©¸ºÊý¼¯ºÏ£º{-7£¬-$\frac{2}{3}$£¬-8$\frac{1}{4}$£¬$\frac{1}{9}$¡­}   
£¨3£©ÕûÊý¼¯ºÏ£º{3£¬-7£¬0£¬15¡­}    £¨4£©·Ç¸ºÊý¼¯ºÏ£º{3£¬5.$\stackrel{•}{6}$£¬0£¬15£¬$\frac{1}{9}$¡­}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Âí»¢Í¬Ñ§×öÁËÒÔÏÂ5µÀ¼ÆËãÌ⣺¢Ù0-£¨-1£©=1£»¢Ú$\frac{1}{2}$¡Â£¨-$\frac{1}{2}$£©=-1£»¢Û-$\frac{5}{7}$+$\frac{2}{7}$=-£¨$\frac{5}{7}$+$\frac{2}{7}$£©=-1£»¢Ü-7-2¡Á5=-9¡Á5=-45£»ÇëÄã°ïËû¼ì²éһϣ¬ËûÒ»¹²×ö¶ÔÁË£¨¡¡¡¡£©
A£®1ÌâB£®2ÌâC£®3ÌâD£®4Ìâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¸ø³öÏÂÁи÷Êý£º$\frac{3}{2}$£¬-6£¬3.5£¬-1.5£¬0£¬4£¬-$\frac{7}{2}$£¬
£¨1£©ÔÚÕâЩÊýÖУ¬ÕûÊýÊÇ-6£¬0£¬4£»¸º·ÖÊýÊÇ-1.5£¬-$\frac{7}{2}$£®
£¨2£©ÔÚÊýÖáÉϱíʾ³öÕâЩÊý£¬²¢Ö¸³öÓëÔ­µã¾àÀë×îÔ¶µÄÊýÊÇ-6£®
£¨3£©°ÑÕâЩÊýÓá°£¼¡±Á¬½ÓÆðÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨1£©-54¡Á2$\frac{1}{4}$¡Â£¨-4$\frac{1}{2}$£©¡Á$\frac{2}{9}$           
£¨2£©£¨$\frac{1}{2}$-$\frac{5}{9}$+$\frac{7}{12}$£©¡Á£¨-36£©
£¨3£©-4¡Á7-£¨-3£©¡Á6+5              
£¨4£©-1-¡²1-£¨1-0.5¡Á$\frac{1}{3}$£©¡³¡Á6
£¨5£©-5a+0.3a-2.7a                 
£¨6£©$\frac{1}{3}$£¨9y-3£©+2£¨y+1£©
£¨7£©-22-£¨-3£©3¡Á£¨-1£©4-£¨-1£©5          
£¨8£©£¨-$\frac{5}{8}$£©¡Á£¨-4£©2-0.25¡Á£¨-5£©¡Á£¨-4£©3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸