精英家教网 > 初中数学 > 题目详情
18.解方程组:$\left\{\begin{array}{l}x+y+z=2\\ x+2y+4z=-6\\ x=4y.\end{array}\right.$.

分析 根据解三元一次方程组的方法可以解答本题.

解答 解:$\left\{\begin{array}{l}{x+y+z=2}&{①}\\{x+2y+4z=-6}&{②}\\{x=4y}&{③}\end{array}\right.$
把③代入①,得
5y+z=2④
把③代入②,得
6y+4z=-6⑤
④×4-⑤,得
14y=14
解得,y=1,
 把y=1代入④,得z=-3,
把y=1代入③,得x=4,
故原方程组的解是$\left\{\begin{array}{l}x=4\\ y=1\\ z=-3.\end{array}\right.$.

点评 本题考查解三元一次方程组,解题的关键是明确三元一次方程组的解法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.分解因式
(1)25-4m2
(2)x3-2x2+x;
(3)x2-4xy+4y2-4;
(4)x2(x-y)+(y-x).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算.
(1)$\sqrt{9}$-$\sqrt{16}$;
(2)($\sqrt{3}$-1)(3+2$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知a+b=2ab,且ab+a+b≠0,求$\frac{2a-5ab+2b}{a+ab+b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC和△A′B′C′中,已知∠A=∠A′,∠B=∠B′,AB=A′B′,试把下面运用“叠合法”说明△ABC和△A′B′C′全等的过程补充完整:

说理过程:把△ABC放到△A′B′C′上,使点A与点A′重合,因为AB=A′B′,所以可以使AB与A′B′重合,
并使点C和C′在AB(A′B′)同一侧,这时点A与A′重合,点B与B′重合,
由于∠A=∠A′,因此,射线AC与射线A′C′叠合;
由于∠B=∠B′,因此,射线BC与射线B′C′叠合;
于是点C(射线AC与BC的交点)与点C′(射线A′C′与B′C′的交点)重合.这样△ABC与△A′B′C′重合,即△ABC与△A′B′C′全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:
①-10+8÷(-2)2-(-4)×(-3)
②1$\frac{1}{2}$×$\frac{5}{7}$-(-$\frac{5}{7}$)×2$\frac{1}{2}$+(-$\frac{1}{2}$)÷1$\frac{2}{5}$
化简:
③x2+5y-4x2-3y-1
④7a+3(a-3b)-2(b-3a)
解方程:
⑤2(3x+4)-3(x-1)=3         
⑥2x-3(10-2x)=6-4(2-x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图所示:抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(-1,0),康康依据图象写出了四个结论:
①如果点(-$\frac{1}{2}$,y1)和(2,y2)都在抛物线上,那么y1<y2
②b2-4ac>0;
③m(am+b)<a+b(m≠1的实数);
④$\frac{c}{a}$=-3.
康康所写的四个结论中,正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万米3)与干旱的时间t(天)的关系如图所示,则下列说法正确的是(  )
A.干旱第50天时,蓄水量为1 200万米3
B.干旱开始后,蓄水量每天增加20万米3
C.干旱开始时,蓄水量为200万米3
D.干旱开始后,蓄水量每天减少20万米3

查看答案和解析>>

同步练习册答案