精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c(a≠0)的图象如图所示.
有下列结论:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤当y=2时,x只能等于0.其中正确的是( )

A.①④
B.③④
C.②⑤
D.③⑤
【答案】分析:由抛物线与x轴有两个交点得到b2-4ac>0,判定①错误;
由抛物线的开口向下得到a<0,由与y轴的交点为(0,2)得到c=2,而对称轴为x==2,得a=-b,进一步得到b>0,由此确定②错误;
由对称轴为x=2,与x轴的一个交点为(5,0)可以确定另一个交点为(-1,0),由此推出当x=-1时,y=a-b+c=0,由此判定③正确;
由对称轴为x=2得到4a+b=0,由此判定④正确;
由(0,2)的对称点为(4,2),可以推出当y=2时,x=0或2,由此判定⑤错误.
解答:解:①∵抛物线与x轴有两个交点,
∴b2-4ac>0,错误;
②∵抛物线的开口向下,
∴a<0,
∵与y轴的交点为(0,2),
∴c=2,
∵对称轴为x==2,得a=-b,
∴a、b异号,即b>0,
∴ab<0,错误;
③∵对称轴为x=2,与x轴的一个交点为(5,0),
∴另一个交点为(-1,0),
∴当x=-1时,y=a-b+c=0.正确;
④∵对称轴为x=2,
∴x==2,
∴4a+b=0,正确;
⑤∵(0,2)的对称点为(4,2),
∴当y=2时,x=0或2,错误.
故选B.
点评:此题考查了二次函数的对称性,还考查了二次函数与x轴交点坐标与b2-4ac的关系.提高了学生的分析能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案