精英家教网 > 初中数学 > 题目详情
9.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4$\sqrt{2}$-4或4<x<4$\sqrt{2}$.

分析 分三种情况讨论:先确定特殊位置时成立的x值,
①如图1,当M与O重合时,即x=0时,点P恰好有三个;
②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;
③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.

解答 解:分三种情况:
①如图1,当M与O重合时,即x=0时,点P恰好有三个;

②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,

∴MC⊥OB,
∵∠AOB=45°,
∴△MCO是等腰直角三角形,
∴MC=OC=4,
∴OM=4$\sqrt{2}$,
当M与D重合时,即x=OM-DM=4$\sqrt{2}$-4时,同理可知:点P恰好有三个;
③如图3,取OM=4,以M为圆心,以OM为半径画圆,
则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;
点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;
∴当4<x<4$\sqrt{2}$时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;
综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4$\sqrt{2}$-4或4$<x<4\sqrt{2}$.
故答案为:x=0或x=4$\sqrt{2}$-4或4$<x<4\sqrt{2}$.

点评 本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图1,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(4,0),将直线y=kx沿y轴向上平移4个单位长度后恰好经过B,C两点.

(1)求直线BC及抛物线的解析式;
(2)将直线BC沿y轴向上平移5个单位长度后与抛物线交于D,E两点,若点P是抛物线位于直线BC下方的一个动点,连接PD,交直线BC于点Q,连接PE和PQ.设△PEQ的面积为S,当S取得最大值时,求出此时点P的坐标及S的最大值;
(3)如图2,记(2)问中直线DE与y轴交于M点,现有一点N从M点出发,先沿y轴到达K点,再沿KB到达B点,已知N点在y轴上运动的速度是每秒2个单位长度,它在直线KB上运动速度是1个单位长度.现要使N点按照上述要求到达B点所用的时间最短,请简述确定K点位置的过程,求出点K的坐标,不要求证明.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,C为半圆内一点,O为圆心,直径AB长为4cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足(  )
A.16(1+2x)=25B.25(1-2x)=16C.16(1+x)2=25D.25(1-x)2=16

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米,$\sqrt{2}$≈1.414)(  )
A.34.14米B.34.1米C.35.7米D.35.74米

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是(  )
A.参加本次植树活动共有30人B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.已知抛物线y=ax2(a>0)过A(-2,y1)、B(1,y2)两点,则下列关系式一定正确的是(  )
A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>0

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=$\frac{a-b+c}{x}$在同一坐标系中的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程组$\left\{\begin{array}{l}{x+y=5}\\{2x+3y=11}\end{array}\right.$.

查看答案和解析>>

同步练习册答案