精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点OAB的三等分点,半圆OAC相切,MN分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )

A. 5B. 6C. 7D. 8

【答案】B

【解析】

OAC相切于点D,连接OD,作垂足为POF,此时垂线段OP最短,PF最小值为,当NAB边上时,MB重合时,MN经过圆心,经过圆心的弦最长,根据图形与圆的性质即可求解.

如图,设OAC相切于点D,连接OD,作垂足为POF

此时垂线段OP最短,PF最小值为

OAB的三等分点,

∵⊙OAC相切于点D

MN最小值为

如图,当NAB边上时,MB重合时,MN经过圆心,经过圆心的弦最长,

MN最大值

,

MN长的最大值与最小值的和是6

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AE平分∠DAB,已知CE6BE8DE10

1)求BC的长;

2)若∠CBE36°,求∠ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在O中,弦BC垂直于半径OA,垂足为ED是优弧BC上一点,连接BDADOC,∠ADB=30°.

(1)求∠AOC的度数.

(2)若弦BC=8cm,求图中劣弧BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,ACBDCE均为等腰直角三角形,ACB=90°,B,C,D在一条直线上.

填空:线段AD,BE之间的关系为 .

(2)拓展探究

如图2,ACBDCE均为等腰直角三角形,ACB=DCE=90°,请判断AD,BE的关系,并说明理由.

(3)解决问题

如图3,线段PA=3,B是线段PA外一点,PB=5,连接AB,AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图一座拱桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.

1)建立平面直角坐标系,并求该抛物线的函数表达式;

2)若水面上升1m,水面宽度将减少多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,,

1)求抛物线的解析式和对称轴;

2是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);

3)在第四象限的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6BC3动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点AC重合)作EFAC,交ABBC于点E,交ADDC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.

1)①AC   .②当点FAD上时,用含t的代数式直接表示线段PF的长   

2)当点F与点D重合时,求t的值.

3)设方形EFGH的周长为l,求lt之间的函数关系式.

4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为12t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋中装有4个只有颜色不同的球,其中1个黄球、1个蓝球、2个红球.

(1)任意摸出1个球,记下颜色后不放回,再任意摸出1个球.求两次摸出的球恰好都是红球的概率(要求画树状图或列表);

(2)现再将n个黄球放入布袋,搅匀后,使任意摸出1个球是黄球的概率为,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生产商存有1200千克产品,生产成本为150/千克,售价为400元千克.因市场变化,准备低价一次性处理掉部分存货,所得货款全部用来生产产品,产品售价为200/千克.经市场调研发现,产品存货的处理价格(元/千克)与处理数量(千克)满足一次函数关系(),且得到表中数据.

(千克)

(元/千克)

200

350

400

300

1)请求出处理价格(元千克)与处理数量(千克)之间的函数关系;

2)若产品生产成本为100元千克,产品处理数量为多少千克时,生产产品数量最多,最多是多少?

3)由于改进技术,产品的生产成本降低到了/千克,设全部产品全部售出,所得总利润为(元),若时,满足的增大而减小,求的取值范围.

查看答案和解析>>

同步练习册答案