精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A、B两点.

(1)求A、B、C三点的坐标;

(2)求过A、B、C三点的抛物线的解析式;

(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位长度.

【答案】(1)(1,0)、(3,0)、(2,);(2)y=–(x–2)2+;(3)向上平移了5=4个单位长度

【解析】试题分析:(1)

CCEABE,根据抛物线的对称性知AE=BE;由于四边形ABCD是菱形,易证得△OAD≌△EBC,则OA=AE=BE,设OA=AE=BE=m,则菱形的边长为2m,在RtBCE中,根据勾股定理即可求出m的值,由此可确定ABC三点的坐标;
(2)根据(1)题求得的三点坐标,用待定系数法即可求出抛物线的解析式;
(3)设出平移后的抛物线解析式,将D点坐标代入此函数的解析式中,即可求出平移后的函数解析式,与原二次函数解析式进行比较即可得到平移的单位.

解:(1)过CCEABE,由抛物线的对称性可知AE=BE

∵四边形ABCD是菱形,

CD//AB, AD=BC

∴∠DCE=∠CEO=90°,

又∠DOA=90°, ∴四边形ODCE为矩形,

OD=CE,

RtAODRtBEC中,

OD=ECAD=BC

RtAODRtBECHL),

OA=BE=AE

OA=AE=BE=m则菱形的边长为2m

D(0,), ∴OD=CE= ,

RtAOD中, ,

m2+(2=(2m2

解得m =1;

DC=2,OA=1,OB=3;

ABC三点的坐标分别为(1,0)、(3,0)、(2,);

(2)由(1)知顶点C(2,),可设抛物线的解析式为y=ax﹣2)2+

代入A点坐标可得

解得a =﹣

∴抛物线的解析式为y=﹣x﹣2)2+

(3)设平移后的抛物线的解析式为 y=﹣x﹣2)2+k

代入D(0,)可得

解得k=5

所以平移后的抛物线的解析式为y=﹣x﹣2)2+5

向上平移了5=4个单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AC上取点B,在其同一侧作两个等边三角形ABD BCE ,连接AECDGF,下列结论正确的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知A30),以OA为一边在第一象限内画正方形OABCDm0)为x轴上的一个动点,以BD为一边画正方形BDEF(点F在直线AB右侧).

1)当m3时(如图1),试判断线段AFCD的数量关系,并说明理由.

2)当AF=5时,求点E的坐标;

3)当D点从A点向右移动4个单位,求这一过程中F点移动的路程是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴=–1,P为抛物线上第二象限的一个动点.

(1)求抛物线的解析式并写出其顶点坐标;

(2)当点P的纵坐标为2时,求点P的横坐标;

(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某省计划5年内全部地级市通高铁.某高铁在泰州境内的建设即将展开,现有大量的沙石需要运输.某车队有载质量为8t10t的卡车共12辆,全部车辆运输一次能运输100t沙石.

1)求某车队载质量为8t10t的卡车各有多少辆;

2)随着工程的进展,某车队需要一次运输沙石165t以上,为了完成任务,准备新增购这两种卡车共7辆,车队有多少种购买方案?请你一一求出.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,若,则还需添加的一个条件有( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(PG不与正方形顶点重合,且在CD的同侧),PD=PGDF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF

1)如图1,当点P与点G分别在线段BC与线段AD上时.

请直接写出线段DGPC的数量关系(不要求证明);

求证:四边形PEFD是菱形;

2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB

1)求证:DC为⊙O的切线;

2)若⊙O的半径为3AD=4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A,连接OE并延长与⊙O相交于点F,与BC相交于点C.

(1)求证:BC是⊙O的切线;

(2)若⊙O的半径为6,BC=8,求弦BD的长.

查看答案和解析>>

同步练习册答案