【题目】如图所示,正方形ABCD的边长为3a,两动点E,F分别从顶点B,C同时开始以相同速度沿边BC,CD运动,与△BCF相应的△EGH在运动过程中始终保持△EGH≌△BCF,B,E,C,G在一条直线上.
(1)若BE=a,求DH的长.
(2)当E点在BC边上的什么位置时,△DHE的面积取得最小值?并求该三角形面积的最小值.
【答案】(1)DH=a;(2)△DHE的面积取得最小值,最小值是a2.
【解析】
仔细审题,根据已知点E与点F的移动,得到BE=CF,由已知△BCF≌△EGH,利用全等三角形的性质得到HG=FC,∠G=∠BCF,连接FH,根据前面所得的条件,不难得到四边形EBFH是平行四边形,△DFH是直角三角形,再利用勾股定理第一问就可求解;对于(2),要得到△DHE面积的最小值,设BE=x,根据y=S△CDE+S梯形CDHE-S△EGH=×3a×(3a-x)+ (3a+x)x-×3a×x,结合二次函数求最值的方法即可完成解答.
(1)如图,连接FH,∵△EGH≌△BCF,
∴HG=FC,∠G=∠BCF,
∴HG∥FC,
∴四边形FCGH是平行四边形,
∴FH=CG,
∴∠DFH=∠DCG=90°.
由题意可知,CF=BE=a.在Rt△DFH中,DF=3a-a=2a,FH=a,
∴DH=a.
(2)设BE=x,△DHE的面积为y.
依题意,得y=S△CDE+S梯形CDHG-S△EGH=×3a×(3a-x)+ (3a+x)x-×3a×x,
∴y=x2-ax+a2,即y=+a2.
∴当x=a,即E是BC的中点时,y取得最小值,即△DHE的面积取得最小值,最小值是a2.
科目:初中数学 来源: 题型:
【题目】(本小题满分7分) 已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.
(1)求a的值及双曲线y=的解析式;
(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.
①求直线BC的解析式;
②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.
(1)求证:DE是半圆⊙O的切线;
(2)若∠BAC=30°,DE=2,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某大学的楼门是一抛物线形水泥建筑物,大门的地面宽度为,两侧距离地面高处各有一个挂校名横匾用的铁环,两铁环的水平距离为,则校门的高约为(精确到,水泥建筑物的厚度忽略不计)( )
A. 9.2m B. 9.1m C. 9.0m D. 8.9m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为3 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1 cm/s,当点P运动到B时,P,Q两点停止运动,设P点运动时间为t(s).
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y关于t的函数表达式,当t取何值时,四边形APQC的面积最小?并求出最小面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分线,与BC相交于点E,点G是BC上一点,E为线段BG的中点,DG⊥BC于点G,交AC于点F,则FG的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求证:对于任意实数m,方程总有两个不相等的实数根;
(2)若方程的一个根是1,求m的值及方程的另一个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如表:
周数x | 1 | 2 | 3 | 4 |
价格y(元/千克) | 2 | 2.2 | 2.4 | 2.6 |
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式;
(2)进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=﹣x2+bx+c,请求出5月份y与x的函数关系式;
(3)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=﹣x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com