【题目】已知反比例函数的图象经过点.
写出函数表达式;
这个函数的图象在哪几个象限?随的增大怎样变化?
点、在这个函数的图象上吗?
如果点在图象上,求的值.
【答案】反比例函数解析式为;图象分布在第一、三象限;点在反比例函数图象上,点不在这个函数的图象;.
【解析】
(1)利用待定系数法可求得反比例函数解析式为y=;
(2)根据反比例函数的性质求解;
(3)根据反比例函数图象上点的坐标特征进行判断;
(4)利用反比例函数图象上点的坐标特征得到6(a+1)=18,然后解方程即可.
(1)设反比例函数解析式为y=,把A(﹣6,﹣3)代入得:k=﹣6×(﹣3)=18,所以反比例函数解析式为y=;
(2)反比例函数解析式y=的图象分布在第一、三象限,在每一象限内,y随x的增大而减小;
(3)∵4×=18,2×(﹣5)=﹣10,∴点B(4,)在反比例函数图象上,点C(2,﹣5)不在这个函数的图象;
(4)把D(a+1,6)代入y=得:6(a+1)=18,解得:a=2.
科目:初中数学 来源: 题型:
【题目】为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型 | 目的地 | |
A村(元/辆) | B村(元/辆) | |
大货车 | ||
800 | 900 | |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③4a-2b+c<0.其中正确的有( )
A. 3个 B. 2个 C. 1个 D. 0个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四根长度分别为3,4,5,x(x为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形则组成的三角形的周长( )
A.最小值是11B.最小值是12C.最大值是14D.最大值是15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把大小和形状完全相同的张卡片分成两组,每组张,分别标上、、,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.
请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;
若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的序号是___________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠A=∠B=30°,E,F 在 AB 上,∠ECF=60°.
(1)画出△BCF 绕点 C 顺时针旋转 120°后的△ACK;
(2)在(1)中,若 AE2+ EF2= BF2,求证 BF= CF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com