【题目】如图,在菱形ABCD中,AB=,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为_____.
【答案】1或
【解析】
由四边形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EF∥AB,于是得到EF=AB=,当△EFG为等腰三角形时,①EF=GE=
时,于是得到DE=DG=
AD÷
=1,②GE=GF时,根据勾股定理得到DE=
.
∵四边形ABCD是菱形,∠B=120°,
∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,
∵EF∥AB,
∴四边形ABFE是平行四边形,
∴EF∥AB,
∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,
∵DE=DG,
∴∠DEG=∠DGE=30°,
∴∠FEG=30°,
当△EFG为等腰三角形时,
当EF=EG时,EG=,
如图1,
过点D作DH⊥EG于H,
∴EH=EG=
,
在Rt△DEH中,DE==1,
GE=GF时,如图2,
过点G作GQ⊥EF,
∴EQ=EF=
,在Rt△EQG中,∠QEG=30°,
∴EG=1,
过点D作DP⊥EG于P,
∴PE=EG=
,
同①的方法得,DE=,
当EF=FG时,由∠EFG=180°-2×30°=120°=∠CFE,此时,点C和点G重合,点F和点B重合,不符合题意,
故答案为:1或.
科目:初中数学 来源: 题型:
【题目】如图,五边形是学校的一块种植基地示意图,这块基地可以分成正方形
和
,已知这个五边形的周长为88米,正方形
的面积为400平方米.
(1)求正方形的周长;
(2)求点到
边的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为庆祝重庆南开中学建校83周年暨校运动会,我校初二(21)班准备统一穿初一时期订制的服装参加运动会,分别需要增订“英伦学院风”班服(250元/件)、“”运动裤(90元/件)、“少年的我”短袖
恤(40元/件)共50件(三种服装均有增订),总花费6000元,且需要增订“少年的我”短袖
恤的件数最多,则需要增订“
”运动裤__________件.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学兴趣小组,对函数y=|x﹣1|+1的图象和性质进行了探究,探究过程如下:
(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象:
(3)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
序号 | 函数图象特征 | 函数变化规律 |
示例1 | 在直线x=1的右侧,函数图象呈上升状态 | 当x>1时,y随x的增大而增大 |
① | 在直线x=1的左侧,函数图象呈下降状态 |
|
示例2 | 函数图象经过点(﹣3,5) | 当x=﹣3时,y=5 |
② | 函数图象的最低点是(1,1) |
|
(4)当2<y≤4时,x的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为宣传6月6日世界海洋日,某校八年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:
(1)本次调查一共随机抽取了个参赛学生的成绩;
(2)表1中a= ;
(3)所抽取的参赛学生的成绩的中位数落在的“组别”是 ;
(4)请你估计,该校九年级竞赛成绩达到90分以上(含90分)的学生约有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=-+b(b>0,b为常数)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴交于点C,与y轴正半轴相交于点D.
(1)若直线AB与⊙O相切于弧CD上一点,求b的值;
(2)若直线AB与⊙O有两个交点F、G.
①b为何值时,⊙O上有且只有3个点到直线AB的距离为2?并求出此时直线被⊙O所截的弦FG的长;
②是否存在这样的b,使得∠GOF=90°?若存在,求出b的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以四边形的边
、
、
、
为斜边分别向外侧作等腰直角三角形,直角顶点分别为
、
、
、
,顺次连结这四个点,得四边形
.
(1)如图1,当四边形为矩形时,请判断四边形
的形状(不要求证明).
(2)如图2,当四边形为一般平行四边形时,设
①试用含的代数式表示
,写出解答过程;
②求证:,并判断四边形
是什么四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com