精英家教网 > 初中数学 > 题目详情
已知一次函数y=kx+b与双曲线y=
4
x
在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4.
(1)求一次函数的解析式;
(2)根据图象指出不等式kx+b>
4
x
的解集;
(3)点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围.
(1)将A点横坐标为1、B点横坐标为4分别代入双曲线y=
4
x
中,可得A(1,4),B(4,1);
再将A、B两点分别代入一次函数y=kx+b中,解得:k=-1,b=5;
∴一次函数的解析式为:y=-x+5(3分);

(2)从两个函数图象的交点看,x的取值在两个交点A、B之间时,一次函数的函数值才大于反比例函数的函数值,
∴1<x<4或x<0(3分);

(3)①0<t<1时,S=
1
2
t[
4
x
-(-t+5)]=
1
2
t2-
5
2
t+2

②1<t<4时,S=
1
2
t[(-t+5)-
4
x
]=-
1
2
t2+
5
2
t-2

③4<t时,S=
1
2
t[
4
x
-(-t+5)]=
1
2
t2-
5
2
t+2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=
m
x
的图象的两个交点,直线AB与x轴交于点C.
(1)求m和n的值;
(2)求一次函数的解析式及△AOB的面积;
(3)求不等式kx+b-
m
x
<0
的解集(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,在平面直角坐标系中,反比例函数y=
k
x
(k≠0)的图象与一次函数y=x+b的图象交于A(-1,b-1)、B(-5,b-5)两点.
(1)求反比例函数与一次函数的解析式;
(2)设抛物线y=-x2+b′x+c(c>0)的顶点P在直线AB上,且PA:PB=1:3,求抛物线的解析式;
(3)把以上函数图象同步向右平移,使直线AB与两坐标轴所围成的三角形的面积等于2,求平移后的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知反比例函数y=
m
x
(x>0)的图象与一次函数y=-
1
2
x+
5
2
的图象交于A、B两点,点C的坐标为(1,
1
2
),连接AC,AC平行于y轴.
(1)求反比例函数的解析式及点B的坐标;
(2)现有一个直角三角板,让它的直角顶点P在反比例函数图象上的A、B之间的部分滑动(不与A、B重合),两直角边始终分别平行于x轴、y轴,且与线段AB交于M、N两点,试判断P点在滑动过程中△PMN是否与△CAB总相似,简要说明判断理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,双曲线y=
k
x
与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q两点,且p=
MB
MQ
q=
MA
MP
,则p-q的值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=-x+b与双曲线y=-
1
x
(x<0)交于点A,与x轴交于点B,则OA2-OB2=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m、n)是函数y=
k
x
(k>0,x>0)图象上的一个动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设两个四边形OEPF和OABC不重合部分的面积之和为S.
(1)求B点坐标和k的值;
(2)当S=
9
2
时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知双曲线y=
2
x
y=
k
x
的部分图象如图所示,P是y轴正半轴上一点,过点P作ABx轴,分别交两个图象于点A,B.若PB=2PA,则k=______.

查看答案和解析>>

同步练习册答案