精英家教网 > 初中数学 > 题目详情

【题目】在一条南北方向的公路上,有一辆出租车停在A地,乘车的第一位客人向南走3千米下车;该车继续向南开,又走了2千米后,上来第二位客人,第二位客人乘车向北走7千米下车,此时恰好有第三位客人上车,先向北走3千米,又调头向南走,结果下车时出租车恰好到了A地.

(1)如果以A地为原点,向北方向为正方向,用1个单位表示1千米,在数轴上表示出第一位客人和第二位客人下车的位置;

(2)第三位客人乘车走了多少千米?

(3)规定出租车的收费标准是4千米内付7元,超过4千米的部分每千米加付1元(不足1千米按1千米算),那么该出租车司机在这三位客人中共收了多少钱?

【答案】(1) 第一位客人在点B处下车,第二位客人在点C处下车;(2) 第三位客人乘车走了8千米;(3) 该出租车司机在这三位客人中共收了28.

【解析】

1)根据题意在数轴上表示出第一位客人下车的地点B,第二位客人下车的地点C即可;

(2)结合数轴列式,然后根据有理数的加减混合运算进行计算即可;

(3)根据路程分别计算出三位客人的支付钱数,再根据有理数的加法运算法则进行计算即可求解.

1)如图所示,

第一位客人在点B处下车,第二位客人在点C处下车;

(2)3+(2+3)=3+5=8千米,

答:第三位客人乘车走了8千米;

(3)第一位客人共走3千米,付7元,

第二位客人共走7千米,付7+1×(7-4)=7+3=10元,

第三位客人共走8千米,付7+1×(8-4)=11元,

7+10+11=28元,

∴该出租车司机在这三位客人中共收了28.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图(1),若∠AOC=,求∠DOE的度数;

(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2DOB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ÷ +(2﹣ 0﹣(﹣1)2014+| ﹣2|+(﹣ 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.

(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,
①当∠EAC=90°时,求PB的长;
②直接写出旋转过程中线段PB长的最小值与最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是(
A.94分,96分
B.96分,96分
C.94分,96.4分
D.96分,96.4分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C(0,-2),直线l:y=kx-2k无论k取何值,直线总过定点B,

(1)求定点B的坐标.

(2)如图1,若点D为直线BC上(点(-1,-3)除外)一动点,过点Dx轴的垂线交y= - 3于点E,点F在直线BC上,距离D点为个单位,D点横坐标为t,ΔDEF的面积为S,求St函数关系式.

(3)若直线BC关于x轴对称后再向上平移5个单位得到直线B1C1,如图2,点G(1,a)H(6,b)是直线B1C1上两点,点P(m,n)为第一象限内(G、H两点除外)的一点,,mn=6,直线PGPH为分别交y轴于点MN两点,问线段OM、ON有什么数量关系,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:

每台甲型收割机的租金

每台乙型收割机的租金

A地区

1800

1600

B地区

1600

1200

(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求yx间的函数关系式,并写出x的取值范围;

(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;

(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题7)如图,在RtABCACB=90°,EAC上一点,且AE=BC,过点AADCA,垂足为A,且AD=AC,AB、DE交于点F.

(1)判断线段ABDE的数量关系和位置关系,并说明理由;

(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线,交CE的延长线于点F,且AF=BD,连接BF.

(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

同步练习册答案