精英家教网 > 初中数学 > 题目详情

【题目】如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为

【答案】
【解析】解:连接PP′,如图, ∵线段PC绕点C顺时针旋转60°得到P'C,
∴CP=CP′=6,∠PCP′=60°,
∴△CPP′为等边三角形,
∴PP′=PC=6,
∵△ABC为等边三角形,
∴CB=CA,∠ACB=60°,
∴∠PCB=∠P′CA,
在△PCB和△P′CA中

∴△PCB≌△P′CA,
∴PB=P′A=10,
∵62+82=102
∴PP′2+AP2=P′A2
∴△APP′为直角三角形,∠APP′=90°,
∴sin∠PAP′= = =
所以答案是

【考点精析】解答此题的关键在于理解等边三角形的性质的相关知识,掌握等边三角形的三个角都相等并且每个角都是60°,以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C(2,1),D(3,3).
(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;
(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=∠ACB

1)若DBC边上一点,E为直线AC上一点,且∠ADE=∠AED.求证:∠BAD=2CDE

2)如图,若DBC的反向延长线上,其它条件不变,(1)中的结论是否仍然成立?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图,请根图中提供的信息,解答下列问题:

1)参加调查的人数共有  人;

2)将条形图补充完整;

3)求在扇形图中表示其它球类的扇形的圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.

学生借阅图书的次数统计表:

借阅图书的次数

次及以上

人数

请你根据统计图表中的信息,解答下列问题:

1

2)该调查统计数据的中位数是 ,众数是

3)若该校共有名学生,根据调查结果,估计该校学生在一周内借阅图书次及以上的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(3,0),ABO=30°,且AB⊥BC.

(1)求直线BC和AB的解析式;

(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;

(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请求出这两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:用2A型车和1B型车装满货物一次可运货10t;用1A型车和2B型车装满货物一次可运货11t.某物流公司现有35t货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:

(1)1A型车和1B型车都装满货物一次可分别运货多少吨?

(2)请你帮该物流公司设计租车方案;

(3)A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在□ABCD中,O是AC、BD的交点,过点O 与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为( ).

A. 8cm B. 10cm C. 11cm D. 12cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图,端点为P的两条射线分别交两直线l1、l2A、C、B、D四点,已知∠PBA=PDC,l=PCD,求证:∠2+3=180°.

证明:∵∠PBA=PDC(   

   (同位角相等,两直线平行)

∴∠PAB=PCD(   

∵∠1=PCD(   

   (等量代换)

∴PC//BF(内错角相等,两直线平行),

∴∠AFB=2(   

∵∠AFB+3=180°(   

∴∠2+3=180°(等量代换)

查看答案和解析>>

同步练习册答案