精英家教网 > 初中数学 > 题目详情

【题目】根据图①所示的程序,得到了如图②y与x的函数图像,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图像于点P、Q,连接OP、OQ.则以下结论:

①x<0时,y=; ②△OPQ的面积为定值; ③x>0时,y随x的增大而增大;

④MQ=2PM; ⑤∠POQ可以等于90°.

其中正确结论序号是

A. ①②③ B. ②③④ C. ③④⑤ D. ②④⑤

【答案】D

【解析】

由流程图可知函数解析式从而判断①;SOPQ= SPMQ+ SMQO=1+2=3,可判断②;由图像可判断③;由流程图可知函数解析式:x<0时,y=;x>0时,y=再分别用OM表示PMMQ即可证明;∠POQ=90°,△PMO∽△OMQ,利用相似的性质可求解出PM、QM以及OM三者之间的关系PM、QM以及OM三者之间满足一定的数量关系可得到∠POQ=90°,据此判断⑤.

解:由流程图可知,x<0时,y=错误;由反比例函数系数k的几何意义可得SPMQ =1,SMQO=2,SOPQ= SPMQ+ SMQO=1+2=3,正确;由图像可知,x>0时,yx的增大而减小,故错误;由流程图可知函数解析式:x<0时,y=;x>0时,y=PM=,MQ=MQ=2PM,正确;∠POQ=90°,△PMO∽△OMQ,则可得OM2=PM×MQ,即当OM2=PM×MQ,∠POQ=90°,正确.

故选择D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,已知ABAD2BC3CD1,∠A90°.

1)求BD的长;

2)求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C=90°AC=6BC=8DAB的中点,EF分别是ACBC上两点,且EDFD

1)如图1,若EAC中点,则BF=______EF=______AE2+BF2______EF2(填“>,<=”);

2)如图2,若点EAC边上任意一点,AE2+BF2_____EF2(填“>,<=”),请说明理由;

3)若点ECA延长上,(2)中三条线段之间的关系是否成立?请画图说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,动点PB点出发,沿BCDA匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.

1)在这个变化中,自变量、因变量分别是      

2)当点P运动的路程x4时,△ABP的面积为y   

3)求AB的长和梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点AABx轴,垂足为点A,过点CCBy轴,垂足为点C,两条垂线相交于点B.

(1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   

(2)折叠图1中的ABC,使点A与点C重合,再将折叠后的图形展开,折痕DEAB于点D,交AC于点E,连接CD,如图2.

请从下列A、B两题中任选一题作答,我选择   题.

A:①求线段AD的长;

②在y轴上,是否存在点P,使得APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

B:①求线段DE的长;

②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON=90°,已知ABC中,AC=BC=13AB=10ABC的顶点AB分别在射线OMON上,当点BON上运动时,A随之在OM上运动,ABC的形状始终保持不变,在运动的过程中,点C到点O的最小距离为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°AB=10cmBC=6cm,若点P从点A出发,以每秒4cm的速度沿折线ACBA运动,设运动时间为t秒(t0).

1)若点PAC上,且满足BCP的周长为14cm,求此时t的值;

2)若点P在∠BAC的平分线上,求此时t的值;

3)在运动过程中,直接写出当t为何值时,BCP为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7 m,看旗杆顶部M的仰角为45°;小红的眼睛与地面的距离(CD)是1.5 m,看旗杆顶部M的仰角为30°.两人相距30米且位于旗杆两侧(点B,N,D在同一条直线上).求旗杆MN的高度.(参考数据:≈1.414,≈1.732,结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,y关于x的函数的图像大致为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案