精英家教网 > 初中数学 > 题目详情
(2002•泉州)已知抛物线y=(x-2)2-m2(常数,n>0)的顶点为P.
(1)写出抛物线的开口方向和P点的横坐标;
(2)若此抛物线与x轴的两个交点从左到右分别为A、B,并且∠APB=90°,试求△ABP的周长.

【答案】分析:(1)抛物线的解析式中,二次项系数决定开口的方向和开口的大小,本题中抛物线的二次项系数为1,因此开口向上.由于本题的抛物线的解析式是顶点式表达式.因此可直接得出顶点P的横坐标为2.
(2)求△ABP的周长,关键是确定三角形三顶点的坐标.可先根据抛物线的解析式用m表示出A、B两点的横坐标,那么AB的差就是这两个横坐标的差的绝对值,由于∠APB=90°,可得出△APB是等腰直角三角形,因此P点的纵坐标的绝对值应该是AB长的一半,由此可求出m的值.进而可求出A、B、P三点的坐标即可求出△ABP的周长.
解答:解:(1)抛物线开口向上,顶点P的横坐标为2;

(2)如图,设A、B两点坐标分别为A(x1,0)、B(x2,0).
由(x-2)2-m2=0,
∵m>0,
∴x1=-m+2,x2=m+2.
AB=x2-x1=(m+2)-(-m+2)=2m.
∵P为抛物线的顶点.
又∵抛物线对称轴为AB的垂直平分线,
∴∠PAB=45°.
因此AD=PD
∴PD=AB.
即m2=•2m.
∵m>0.
∴m=1
由此可求得:AB=2,AP=BP=
∴△APB的周长为2+2
点评:本题考查了二次函数的性质以及一元二次方程根与系数的关系(即韦达定理).
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2002•泉州)已知抛物线y=(x-2)2-m2(常数,n>0)的顶点为P.
(1)写出抛物线的开口方向和P点的横坐标;
(2)若此抛物线与x轴的两个交点从左到右分别为A、B,并且∠APB=90°,试求△ABP的周长.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•泉州)已知:直线l的解析式为y=x+m(m为常数,m≠0),点(-4,3)在直线l上.
(1)求m的值;
(2)若⊙A的圆心为原点,半径为R,并且⊙A与直线l有公共点,试求R的取值范围;
(3)当(2)中的⊙A与l有唯一公共点时,将此时的⊙A向左移动(圆心始终保持在x轴上),试求在这个移动过程中,当直线l被⊙A截得的弦的长为时圆心A的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年福建省泉州市中考数学试卷(解析版) 题型:解答题

(2002•泉州)已知:直线l的解析式为y=x+m(m为常数,m≠0),点(-4,3)在直线l上.
(1)求m的值;
(2)若⊙A的圆心为原点,半径为R,并且⊙A与直线l有公共点,试求R的取值范围;
(3)当(2)中的⊙A与l有唯一公共点时,将此时的⊙A向左移动(圆心始终保持在x轴上),试求在这个移动过程中,当直线l被⊙A截得的弦的长为时圆心A的坐标.

查看答案和解析>>

科目:初中数学 来源:2002年福建省泉州市中考数学试卷(解析版) 题型:填空题

(2002•泉州)已知梯形中位线长为4,下底长为6,则梯形的上底长为   

查看答案和解析>>

同步练习册答案