精英家教网 > 初中数学 > 题目详情
如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是  m.(结果不取近似值)
求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.
解:圆锥的底面周长是6,则6=
∴n=180°,即圆锥侧面展开图的圆心角是180度.
则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.
∴在圆锥侧面展开图中BP=m.
故小猫经过的最短距离是m.
故答案是:
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知a、b是正实数,那么,是恒成立的.
(1)由恒成立,说明恒成立;
(2)如图,已知AB是直径,点P是弧上异于点A和点B的一点,PC⊥AB,垂足为C,AC=a,BC=b,由此图说明恒成立.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O是△ABC的外接圆,∠OCB=50°,则∠A的度数等于(   )
A.40°B.50°C.60°D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是(  )
A.OC∥AEB.EC=BCC.∠DAE=∠ABED.AC⊥OE

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,□ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为(  )

A.36°      B.46°       C.27°      D.63°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为( ).

A.       B.              C.      D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知圆锥的底面半径是3cm,母线长为6cm,则这个圆锥的侧面积为_______cm2.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为(  )
A.4πB.2π
C.πD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(     )
A.4B.5C.D.6

查看答案和解析>>

同步练习册答案