精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AC,∠BAC=90°,点D是BC边上的中点,DE⊥DF,AD与EF相交精英家教网于点G.
(1)试判断∠AGF与∠AED的大小关系,证明你的结论.
(2)若BE=12,CF=5,求△DEF的面积.
分析:(1)根据等腰直角三角形的性质,点D是BC边上的中点,三线合一,再根据等角的余角相等,得出△DEF等腰直角三角形,从而得出∠AGF=∠AED;
(2)利用(1)得出得结论,同时利用勾股定理计算出DE、DF即可得出△DEF的面积.
解答:(1)∠AGF=∠AED,
证明:∵AB=AC,∠BAC=90,点D是BC边上的中点,三线合一,
∴BD=AD,∠B=∠DAF,BD⊥AD,
又∴DE⊥DF,
根据等角的余角相等,
∴∠BDE=∠ADF,
∴△BDE≌△ADF,
∴DE=DF,
∴△DEF等腰直角三角形,
∴∠DEF=45°,
又∵∠AGF=∠EAG+∠AEG,∠EAG=∠DEF=45°,
∴∠AGF=∠DEF+∠AEG=∠AED;

(2)解:由(1)得AB=AC=BE+CF=12+5=17,
∴AE=5,AF=12,
根据勾股定理得EF=13,
又∵△DEF等腰直角三角形,
∴DE=DF=
13
2
2

∴S△DEF=
1
2
×
13
2
2
×
13
2
2

=
169
4
点评:本题主要考查了等腰直角三角形的性质、全等三角形的判定及性质、勾股定理、三角形面积公式,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案