【题目】如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,求∠EDF的度数。
【答案】∠EDF=68°.
【解析】
由FD⊥BC,得∠FDC=90°;因∠AFD是△CDF的外角,∠AFD=158°,所以∠C=∠AFD∠FDC=158°90°=68°.由∠B=∠C,可得出∠B的度数.由DE⊥AB,得∠DEB=90°,进而求得∠BDE的度数,则∠EDF的度数即可求得.
∵FD⊥BC,所以∠FDC=90°,
∵∠AFD=∠C+∠FDC,
∴∠C=∠AFD﹣∠FDC=158°﹣90°=68°,
∴∠B=∠C=68°.
∵DE⊥AB,
∴∠DEB=90°,
∴∠BDE=90°﹣∠B=22°.
又∵∠BDE+∠EDF+∠FDC=180°,
∴∠EDF=180°﹣∠BDE﹣∠FDC=180°﹣22°﹣90°=68°.
科目:初中数学 来源: 题型:
【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图,请根据图表信息回答下列问题:
初中毕业生视力抽样调查频数分布表
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=______°,∠DEC=______°;点D从B向C运动时,∠BDA逐渐变______(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若S四边形BFDE=9,则AB的长为:
A. 3 B. 6 C. 9 D. 18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中, , , ,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.
(1)如图1,当时,求EF的长;
(2)如图2,当点E在AC边上移动时, 的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;
(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE。F为AB上一点,且BF=DE,连接FC.
(1)若DE=1,CF=2,求CD的长。
(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=600,求证:AF+CE=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.
(1)求抛物线的解析式;
(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;
(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,
ⅰ)求点P的坐标;
ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=6,BC=8.
(1)求对角线AC的长;
(2)点E是线段CD上的一点,把△ADE沿着直线AE折叠.点D恰好落在线段AC上,与点F重合,求线段DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com