已知实系数一元二次方程ax2+2bx+c=0有两个实根x1、x2,且a>b>c,a+b+c=0,若则d=|x1-x2|的取值范围为 .
【答案】
分析:根据根与系数的关系即可求得x
1+x
2=-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/0.png)
,x
1•x
2=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/1.png)
,则可得d
2=|x
1-x
2|
2=(x
1+x
2)
2-4x
1•x
2,又由a>b>c,a+b+c=0,得到函数f(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/2.png)
)=4[(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/3.png)
)
2+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/4.png)
+1],根据其增减性即可求得答案.
解答:解:∵实系数一元二次方程ax
2+2bx+c=0有两个实根x
1、x
2,
∴x
1+x
2=-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/5.png)
,x
1•x
2=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/6.png)
,
∴d
2=|x
1-x
2|
2=(x
1+x
2)
2-4x
1•x
2=(-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/7.png)
)
2-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/8.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/9.png)
=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/10.png)
=4[(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/11.png)
)
2+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/12.png)
+1]=4[(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/13.png)
+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/14.png)
)
2+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/15.png)
]
∵a>b>c,a+b+c=0,
∴a>0,c<0,a>-a-c>c,
解得:-2<
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/16.png)
<-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/17.png)
,
∵f(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/18.png)
)=4[(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/19.png)
)
2+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/20.png)
+1]的对称轴为:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/21.png)
=-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/22.png)
,
∴当-2<
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/23.png)
<-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/24.png)
时,f(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/25.png)
)=4[(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/26.png)
)
2+
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/27.png)
+1]是减函数,
∴3<d
2<12,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/28.png)
<d<2
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/29.png)
,
即
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/30.png)
<|x
1-x
2|<2
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131103200205762940143/SYS201311032002057629401008_DA/31.png)
.
点评:此题主要考查了含有字母系数的一元二次方程的解法,注意根与系数的关系的应用.