精英家教网 > 初中数学 > 题目详情

【题目】如图:的直径,是弦,,延长到点,使得.

(1)求证:的切线;

(2),求的长.

【答案】(1)见解析;(2).

【解析】

(1)连接DO,由三角形的外角与内角的关系可得∠DOC=C=45°,故有∠ODC=90°,即CD是圆的切线.
(2)由(1)可得OCD是等腰直角三角形,再根据勾股定理得出OC的长,再根据BC=OC﹣OB即可

(1)证明:连接DO,

AO=DO,

∴∠DAO=ADO=22.5°.

∴∠DOC=45°.

又∵∠ACD=2DAB,

∴∠ACD=DOC=45°.

∴∠ODC=90°.

OD是⊙O的半径,

CD是⊙O的切线.

(2)连接DB,

∵∠ACD=DOC=45°, CD=OD

∵直径AB=2

CD=OD=,OC==2,

BC=OC﹣OB=2﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,用长为6m的铝合金条制成字形窗框,若窗框的宽为xm,窗户的透光面积为ym2(铝合金条的宽度不计).

1)求出yx的函数关系式;

2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图像如图所示,则下列五个结论中:①albic0;②ab+c0;③2ab0;④abc0;⑤4a+2b+c0,错误的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)x(单位:cm)的变化而变化.

1)请直接写出Sx之间的函数关系式(不要求写出自变量x的取值范围)

2)当x是多少时,这个三角形面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电脑键盘上的字母为何不按顺序排列?请你来做一项统计,下面是一篇小短文,根据短文中字母a,b出现的机会完成后面提出的问题:

Two Trips

Jack brought a small plane and began to fly it. He soon became excited and made his plane all kinds of tricks.

Jack had a friend,named Tom. One day Jack said to him,“I will pick you up in my plane.““I will be glad to.'answered Tom. They went up,and Jack flew around for half an hour and did all kinds of tricks in the air. Then they came down. Tom was to be back safely,and said to Jack,“Well,Jack,thank you very much for those two trips in your plane.“Jack was very surprised and asked,“Two trips?““Yes,my first and my last.'an﹣swered Tom.

根据上文填表

出现字母的个数

100

150

200

250

300

350

400

出现字母a的频数

出现字母a的频率

出现字母b的频数

出现字母b的频率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,ABy轴,且点B的纵坐标为1,双曲线y经过点B

(1)a的值及双曲线y的解析式;

(2)经过点B的直线与双曲线y的另一个交点为点C,且△ABC的面积为

①求直线BC的解析式;

②过点BBDx轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的一条弦,点C是O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与O交于G、H两点,若O的半径为10,则GE+FH的最大值为(  )

A. 5 B. 10 C. 15 D. 20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ACBC5AB8ABx轴,垂足为A,反比例函数y(x0)的图象经过点C,交AB于点D

(1)OAAB,求k的值;

(2)BCBD,连接OC,求△OAC的面积.

查看答案和解析>>

同步练习册答案