精英家教网 > 初中数学 > 题目详情
如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=    度.
【答案】分析:先用切线的性质得出∠BAD=∠ACD=90°,再用四边形内角和定理得出∠BOC,∠BDC可求.
解答:解:连接OB、OC,则∠ABO=∠ACO=90°,
∠BAC+∠BOC=360°-(∠ABO+∠ACO)=360°-180°=180°,
∠BOC=180°-∠BAC=180°-80°=100°,
故∠BDC=∠BOC=×100=50°.
点评:本题考查的是切线的性质及圆周角定理,四边形内角和定理,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB,AC是⊙O的两条切线,切点分别为B,C,连接OB,OC,在⊙O外作∠BAD=∠BAO,A精英家教网D交OB的延长线于点D.
(1)在图中找出一对全等三角形,并进行证明;
(2)如果⊙O的半径为3,sin∠OAC=
12
,试求切线AC的长;
(3)试说明:△ABD分别是由△ABO,△ACO经过哪种变换得到的.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB、AC是⊙O的切线,且∠A=54°,则∠BDC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧
BC
上的一点,已知∠BAC=80°,则∠BDC=
50
50
度.(直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB,AC是圆的两条弦,AD是圆的一条直径,且BC⊥AD,下列结论中不一定正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB和AC是等腰△ABC的两腰,CD和BE是两腰上的高,CD和BE相交于点F.
(1)在不增加辅助线的前提下,这个图形中共有哪几对全等三角形?请一一写出.
(2)请你在(1)的结论中选择一个说明理由.

查看答案和解析>>

同步练习册答案