精英家教网 > 初中数学 > 题目详情
根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+b x+c=0(a≠0)的一个解的范围是(   ) 

6.17
6.18
6.19
6.20
y=ax2+bx+c
-0.03
-0.01


A.6<x<6.17        B.6.17<x<6.18
C.6.18<x<6.19    D.6.19<x<6.20
C.

试题分析:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围6.18<x<6.19.
故选C.
考点:抛物线与x轴的交点.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2﹣2mx+4m﹣8(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

图中是抛物线形拱桥,当水面宽AB=8米时,拱顶到水面的距离CD=4米.如果水面上升1米,那么水面宽度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了改善市民的生活环境,我市在某河滨空地处修建一个如图所示的休闲文化广场.在Rt△内修建矩形水池,使顶点、在斜边上,、分别在直角边、上;又分别以、、为直径作半圆,它们交出两弯新月(图中阴影部分),两弯新月部分栽植花草;其余空地铺设地砖.其中,.设米,米.

(1)求之间的函数解析式;
(2)当为何值时,矩形的面积最大?最大面积是多少?
(3)求两弯新月(图中阴影部分)的面积,并求当为何值时,矩形的面积等于两弯新月面积的?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲.乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式 .

(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,小华的身高为               ;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围                  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

与y=2(x-1)2+3形状相同的抛物线解析式为(     )
A.y=1+x2B.y=(2x+1)2C.y=(x-1)2D.y=2x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).
(1)求此抛物线的函数表达式;
(2)如果点是抛物线上的一点,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在平面直角坐标系xoy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线经过点A、B和D(4,).

(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

以直线为对称轴的抛物线轴交于A、B两点,其中点A的坐标为.
(1)求点B的坐标;
(2)设点M、N在抛物线线上,且,试比较的大小.

查看答案和解析>>

同步练习册答案