分析 先求出A、B两点的坐标,再设B1(a,a+1),B2(b,b+1),B3(c,c+1),再求出a、b、c的值,利用矩形的面积公式得出其面积,找出规律即可.
解答 解:∵一次函数y=x+1与x、y 轴分别交于点A、B,
∴A(-1,0),B(0,1),
∴AB=$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
设B1(a,a+1),B2(b,b+1),B3(c,c+1),
∵BB1=AB,
∴a2+(a+1-1)2=2,解得a1=1,a2=-1(舍去),
∴B1(1,2),
同理可得,B2(2,3),B3(3,4),
∴S矩形OA3B3C3=3×4=12,
∴S矩形OAnBnCn=n(n+1)=n2+n.
故答案为:(1,2),12,n(n+1)或n2+n.
点评 本题考查的是一次函数图象上点的坐标特点,根据题意得出B1,B2,B3的坐标,找出规律是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com