精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,AB=AC,∠BAC=90°,若CD⊥BD于D点,且BD交AC于E点,问当BD满足什么条件时,CD=
12
BE?并证明你的判断.
分析:延长BA和CD交于F,求出∠ABE=∠FCA,根据ASA证△ABE≌△ACF,求出BE=CF,证△FBD≌△CBD,推出CD=DF即可.
解答:解:当BD是∠ABC的平分线时,CD=
1
2
BE,
理由是:延长BA和CD交于F,
∵∠BAC=90°,CD⊥BD,
∴∠BAC=∠FAC=90°=∠BDC,
∵∠AEB=∠DEC,
根据三角形的内角和定理得:∠ABE=∠FCA,
在△ABE和△ACF中
∠BAE=∠CAF
AB=AC
∠ABE=∠ACF

∴△ABE≌△ACF,
∴CF=BE,
∵BD是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠FDB=∠CDB,
在△FDB和△CDB中
∠FBD=∠CBD
BD=BD
∠FDB=∠CDB

∴△FDB≌△CDB,
∴CD=DF=
1
2
CF=
1
2
BE,
即当BD是∠ABC的平分线时,CD=
1
2
BE.
点评:本题考查了对等腰直角三角形,全等三角形的性质和判定,三角形的内角和定理等知识点的应用,关键是正确作辅助线后构造全等的三角形,通过做此题培养了学生的阅读问题和分析问题的能力,题型较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案