精英家教网 > 初中数学 > 题目详情

抛物线的顶点为P,与x轴交于A、B两点,如果△ABP是正三角形,那么,k=_________.

 

【答案】

3

【解析】

试题分析:根据抛物线y=x2-k的顶点为P,可直接求出P点的坐标,进而得出OP的长度,又因为△ABP是正三角形,得出∠OPB=30°,利用锐角三角函数即可求出OB的长度,得出B点的坐标,代入二次函数解析式即可求出k的值.

∵抛物线y=x2-k的顶点为P,

∴P点的坐标为:(0,-k),∴PO=K,

∵抛物线y=x2-k与x轴交于A、B两点,且△ABP是正三角形,

∴OA=OB,∠OPB=30°,

∴tan30°=

∴点B的坐标为:(,0),点B在抛物线y=x2-k上,

∴将B点代入y=x2-k,得:

0=(2-k,

整理得:

解方程得:k1=0(不合题意舍去),k2=3.

故答案为:3.

考点:此题主要考查了二次函数顶点坐标的求法

点评:解决此类题目要熟练掌握二次函数顶点坐标的求法,以及正三角形的性质和锐角三角函数求值问题等知识,求出A或B点的坐标进而代入二次函数解析式是解决问题的关键.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某抛物线是由抛物线y=-2x2向左平移2个单位得到.
(1)求抛物线的解析式,并画出此抛物线的大致图象;
(2)设抛物线的顶点为A,与y轴的交点为B.
①求线段AB的长及直线AB的解析式;
②在此抛物线的对称轴上是否存在点C,使△ABC为等腰三角形?若存在,求出这样的点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知抛物线①经过点A(-1,0)、B(4,5)、C(0,-3),其对称轴与直线BC交于点P.
(1)求抛物线①的表达式及点P的坐标;
(2)将抛物线①向右平移1个单位后再作上下平移,得到的抛物线②恰好过点P,求上下平移的方向和距离;
(3)设抛物线②的顶点为D,与y轴的交点为E,试求∠EDP的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图抛物线y=a(x-1)2+4与x轴交于A、B两点,与y轴交于点C,D是抛物线的顶点,已知CD=
2

(1)求抛物线的解析式;
(2)在抛物线上共有三个点到直线BC的距离为m,求m的值;
(3)将(1)中的抛物线向上平移t(t>0)个单位,与直线CD交于点G、H,设平移后的抛物线的顶点为D1,与y轴的交点为C1,是否存在实数t,使得DH⊥HD1,若存在,求出t的值;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c的顶点为(1,0),且经过点(0,1).
(1)求该抛物线对应的函数的解析式;
(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若△ABC为等边三角形.
①求m的值;
②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案