精英家教网 > 初中数学 > 题目详情
28、如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,动点P从A开始沿AD边向D以1cm/秒的速度运动,动点Q从C点开始沿CB边以2cm/秒的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒,t为何值时四边形PQCD为等腰梯形?
分析:要使四边形PQCD为等腰梯形,由于AD∥BC,那么只需在移动的过程中满足PQ=CD即可.
解答:解:如图所示.过点D、Q分别作DE⊥BC于E,QN⊥AD于N.
∵∠A=∠B=∠BED=90°,∴ABED为矩形,
∴AD=BE,
在直角梯形ABCD中,
AD∥BC,∠B=90°,AD=18cm,BC=21cm,
∴CE=BC-BE=BC-AD=21-18=3cm.
∵四边形PQCD为等腰梯形,
∴PQ=DC,EC=NP=3,
Q点走过的路程2t=18-t+2×3,
解之得,t=8,
故t=8时四边形PQCD为等腰梯形.
点评:本题考查了等腰梯形的性质,要求能够解决一些简单的运动问题,熟练掌握矩形以及等腰梯形的性质及判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠BAC=90°,将△ABC沿线段BC向右平移得到△DEF,使CE=AE,连结AD、AE、CD,则下列结论:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四边形AECD为菱形,其中正确的共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案