ÔĶÁÏÂÁÐÒ»¶Î»°£¬²¢½â¾öÏÂÃæµÄÎÊÌ⣮
¹Û²ìÕâÑùÒ»ÁÐÊý£º1£¬2£¬4£¬8£¬¡ÎÒÃÇ·¢ÏÖÕâÒ»ÁÐÊý´ÓµÚ2ÏîÆð£¬Ã¿Ò»ÏîÓëËüÇ°Ò»ÏîµÄ±È¶¼µÈÓÚ2£®Ò»°ãµØ£¬Èç¹ûÒ»ÁÐÊý´ÓµÚ2ÏîÆð£¬Ã¿Ò»ÏîÓëËüÇ°Ò»ÏîµÄ±È¶¼µÈÓÚͬһ¸ö³£Êý£¬ÕâÒ»ÁÐÊý¾Í½Ð×öµÈ±ÈÊýÁУ¬Õâ¸ö³£Êý½Ð×öµÈ±ÈÊýÁеĹ«±È£®
£¨1£©µÈ±ÈÊýÁÐ4£¬-16£¬64£¬¡µÄ¹«±ÈÊÇ
-4
-4
£»
£¨2£©Èç¹ûÒ»ÁÐÊýa
1£¬a
2£¬a
3£¬a
4£¬¡ÊǵȱÈÊýÁУ¬ÇÒ¹«±ÈΪq£¬ÄÇô¸ù¾ÝÉÏÊöµÄ¹æ¶¨£¬ÓÐ
=q£¬=q£¬=q£¬¡ËùÒÔ£¬
a2=a1q£¬a3=a2q=(a1q)q=a1q2£¬
a4=a3q=(a1q2)q=a1q3£¬¡a
n=
a1qn-1
a1qn-1
£®£¨ÓÃa
1ÓëqµÄ´úÊýʽ±íʾ£©
£¨3£©Ò»¸öµÈ±ÈÊýÁеĵÚ2ÏîÊÇ18£¬µÚ4ÏîÊÇ8£¬ÇóËüµÄµÚ3Ï