【题目】观察下列等式,并探究
①
②
③
……
(1)写出第④个等式:______;
(2)某同学发现,四个连续自然数的积加上1后,结果都将是某一个整数的平方.当这四个数较大时可以进行简便计算,如:
.
请你猜想写出第n个等式,用含有n的代数式表示,并通过计算验证你的猜想.
(3)任何实数的平方都是非负数(即),一个非负数与一个正数的和必定是一个正数(即时,).根据以上的规律和方法试说明:无论x为什么实数,多项式的值永远都是正数.
科目:初中数学 来源: 题型:
【题目】如图,已知和都是等边三角形,点、、在同一条直线上,交于点,交于点,、交于点.则下列结论:
①;②;③为等边三角形;④.其中正确的是( )
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,AB=18,动点P从点A出发,以每秒1个单位的速度向点B运动,分别以AP、BP为边在AB的同侧作正方形。设点P的运动时间为t.
(1)如图1,若两个正方形的面积之和,当时,求出的大小;
(2)如图2,当取不同值时,判断直线和的位置关系,说明理由;
(3)如图3,用表示出四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD中,∠B=60°,点E,F分别是BC,CD上的两个动点,且始终保持∠AEF=60°.
(1)试判断△AEF的形状并说明理由;
(2)若菱形的边长为2,求△ECF周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两长方形的边长如图所示(m为正整数),其面积分别为S1、S2.
(1)用“<”或“>”号填空:S1 S2;
(2)若一个正方形与甲的周长相等.
①求该正方形的边长(用含m的代数式表示);
②若该正方形的面积为S3,试探究:S3与S1的差(即S3﹣S1)是否为常数?若为常数,求出这个常数;如果不是,请说明理由;
(3)若满足条件0<n<|S1﹣S2|的整数n有且只有10个,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,
(1)求经过A、B、C三点的抛物线的解析式;
(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com