A. | $\frac{1}{4}$x2 | B. | $\frac{1}{2}$x2 | C. | $\frac{1}{5}$x2 | D. | $\frac{1}{3}$x2 |
分析 只要证明图中的阴影部分与对应的非阴影部分全等,则图中阴影部分的面积就不难计算了.
解答 解:∵FP∥CD,
∴∠BPF=∠C=90°(同位角相等);
在△BFP和△BDC中,
$\left\{\begin{array}{l}{∠FBP=∠DBC}\\{∠BPF=∠C}\end{array}\right.$,
∴△BFP∽△BDC,
∴$\frac{FP}{CD}$=$\frac{BF}{BD}$,
同理,得$\frac{NF}{AD}$=$\frac{BF}{BD}$,
又∵AD=CD,
∴NF=FP,
∵∠BNF=∠BPF=90°,BF=BF,
∴△BNF≌△BPF,
∴S△BNF=S△BPF,
同理,求得多边形NFEM与多边形PFEQ的面积相等,多边形MEDA与多边形QEDC的面积相等,
∴图中阴影部分的面积是正方形ABCD面积的一半,即$\frac{1}{2}{x}^{2}$.
故选B
点评 此题考查正方形的性质,解答本题的关键是主要运用了正方形的性质,相似三角形的判定以及相似三角形的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ①③ | C. | ②③ | D. | ③ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②④ | B. | ①②③ | C. | ②③④ | D. | ②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com