【题目】在平面直角坐标系中,O为原点,点A(3,4).
(Ⅰ)如图①,过点A作AB⊥x轴,垂足为B,则三角形AOB的面积为 ;
(Ⅱ)如图②,将点A向右平移1个单位长度,再向下平移2个单位长度,得到点A′,若P是坐标轴上的一点,要使三角形POA′的面积等于三角形OAA′的面积的4倍,则点P的坐标为 .
【答案】(1)6;(2)(0,10)(0,-10)(20,0)(-20,0).
【解析】
(Ⅰ)利用三角形面积公式计算可得;
(Ⅱ)先利用割补法求三角形OAA′的面积,分点P在x轴和y轴上两种情况,设其坐标,根据三角形POA′的面积等于三角形OAA′的面积的4倍列出方程求解可得.
解:(Ⅰ)△AOB的面积为OBAB=×3×4=6,
故答案为:6;
(Ⅱ)∵点A′的坐标为(4,2),
∴三角形OAA′的面积为×(1+4)×4-×4×2-×1×2=5,
若点P在x轴上,设P(m,0),
则|m|2=5×4,
解得:m=±20,
即P(20,0)或(-20,0);
若点P在y轴上,设(0,n),
则|n|×4=5×4,
解得:n=±10,
即P(0,10)或(0,-10),
故答案为:(0,10)(0,-10)(20,0)(-20,0).
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论;
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB的圆心角为90°,点C,D是弧AB的三等分点,半径OC,OD分别与弦AB交于点E,F,下列说法错误的是( )
A.AE=EF=FB
B.AC=CD=DB
C.EC=FD
D.∠DFB=75°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校为数学竞赛准备了若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为竞赛的奖品.若购买2支钢笔和3本笔记本需62元,购买5支钢笔和1本笔记本需90元.
(1)购买一支钢笔和一本笔记本各需多少钱?
(2)若学校准备购买钢笔和笔记本共80件奖品,并且购买的费用不超过1100元,则学校最多可以购买多少支钢笔?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下面的证明:
已知:如图,AB∥DE,求证:∠D+∠BCD﹣∠B=180°,
证明:过点C作CF∥AB.
∵AB∥CF(已知),
∴∠B= ( ).
∵AB∥DE,CF∥AB( 已知 ),
∴CF∥DE ( )
∴∠2+ =180° ( )
∵∠2=∠BCD﹣∠1,
∴∠D+∠BCD﹣∠B=180° ( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若DBC=30,CD=4,求四边形ABED的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,AD=21cm,BC=16cm,DC=12cm,动点P从D开始沿DA向A以2cm/s的速度运动;动点Q从点C开始向B以1cm/s的速度运动.P、Q分别从点D、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.
(1)如图1,当t为何值时,四边形APQB是平行四边形
(2)△BPQ是等腰三角形,则有三种情况:BP=BQ,PB=PQ,QP=QB.
①当BP=BQ时,此情况不成立;
②当PB=PQ时,如图2,作PM⊥BC,则BM=_________________,QM=_________________,(用含t的式子表示),得到t=________________.
③当QP=QB时,请求出t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com