【题目】如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则Sn=_____.
【答案】
【解析】由AB1是边长为2的等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出CB1的长,继而可得△B1CB2是有一个角为30度的直角三角形,同理可知△B2C1B3、△B3C2B4、△B4C3B5、…、都是有一个角为30度的直角三角形,而且后一个的斜边是前一个30度角所邻的直角边,由此即可求得Sn.
∵等边三角形ABC的边长为2,AB1⊥BC,
∴∠C=60°,CB1=BB1=1,
又∵∠B1B2C=90°,∴∠CB1B2=30°,
∴CB2=,B1B2=,∴S1=,
同理,Rt△B2C1B3中,B2C1=B1B2=,∴C1B3=×=,B2B3=,
∴S2=,
同理,S3=
…,
∴Sn=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是( )
A.B.3S
C.4SD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线分别交AB,AC于点D,E.
(1)若∠A=40°,求∠EBC的度数;
(2)若AD=5,△EBC的周长为16,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长AC至E,使CE=AC.
(1)求证:DE=DB;
(2)连接BE,试判断△ABE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=ABAC④OE=AD⑤S△APO=,正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
(1)求此抛物线的解析式.
(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.
(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;
(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边 中, , , ,点 从点 出发沿 方向运动,连接 ,以 为边,在 右侧按如图方式作等边 ,当点P从点E运动到点A时,求点F运动的路径长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,一次函数与x轴、y轴分别交于点A和点B,A点坐标为(3,0),∠OAB=45°.
(1)求一次函数的表达式;
(2)点P是x轴正半轴上一点,以P为直角顶点,BP为腰在第一象限内作等腰Rt△BPC,连接CA并延长交y轴于点Q.
①若点P的坐标为(4,0),求点C的坐标,并求出直线AC的函数表达式;
②当P点在x轴正半轴运动时,Q点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请求出它的变化范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com