精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD的边AB上取一点E,连接CE,将BCE沿CE翻折,点B恰好与对角线AC上的点F重合,连接DF,若BE1,则CDF的面积是_____

【答案】

【解析】

由折叠可得EFBE1,∠CFE=∠B90°,且∠FAE45°可得AF1AE,即可求对角线BD的长,则可求△CDF面积

如图连接BDACO

ABCD为正方形

∴∠ABC90°ABBCACBDDOBO,∠BAC45°

∵△BCE沿CE翻折,

BEEF1BCCF,∠EFC90°

∵∠BAC45°,∠EFC90°

∴∠EAF=∠AEF45°

AFEF1

AE

AB+1BCCF

BDAB2+

OD

SCDF×CF×DO

SCDF

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.

(1)求二次函数y=ax2+2x+c的表达式;

(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;

(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yx2+bx+c与直线yx交于(11)和(33)两点,现有以下结论:b24c03b+c+60x2+bx+c时,x21x3时,x2+b1x+c0,其中正确的序号是(  )

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+cabc为常数,且a≠0)中的xy的部分对应值如表:

X

1

0

1

3

y

3

3

下列结论:

1abc0

2)当x1时,y的值随x值的增大而减小;

316a+4b+c0

4)抛物线与坐标轴有两个交点;

5x3是方程ax2+b1x+c0的一个根;

其中正确的个数为(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC内接于⊙O,且ABAC,直径ADBC于点EFOE上的一点,使CFBD

1)求证:BECE

2)若BC8AD10,求四边形BFCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点PAD延长线上一点,连接AC、CP,FAB边上一点,满足CFCP,过点BBMCF,分别交AC、CF于点M、N

(1)若AC=AP,AC=4,求ACP的面积;

(2)若BC=MC,证明:CP﹣BM=2FN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是数值转换机的示意图,小明按照其对应关系画出了yx的函数图象(如图):

1)分别写出当0≤x≤4x4时,yx的函数关系式:

2)求出所输出的y的值中最小一个数值;

3)写出当x满足什么范围时,输出的y的值满足3≤y≤6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,直径ADBC于点E,延长AD至点F,使DF2OD,连接FC并延长交过点A的切线于点G,且满足AGBC,连接OC,若cosBACBC6

1)求证:∠COD=∠BAC

2)求⊙O的半径OC

3)求证:CF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为,中轴轴心到地面的距离,后轮中心与中轴轴心连线与车架中立管所成夹角,后轮切地面于点.为了使得车座到地面的距离,应当将车架中立管的长设置为_____________.

(参考数据:

查看答案和解析>>

同步练习册答案