精英家教网 > 初中数学 > 题目详情
(2012•温州模拟)△ABC中,∠A=90°,点D在线段BC上(端点B除外),∠EDB=
12
∠C,BE⊥DE于点E,DE与AB相交于点F.
(1)当AB=AC时(如图1)
①∠EBF=
22.5
22.5
°;
②小明在探究过程中发现,线段FD与BE始终保持一种特殊的数量关系,请你猜想这个关系,并利用所学知识证明猜想的正确性;
(2)探究:
当AB=kAC时(k>0,如图2),用含k的式子表示线段FD与BE之间的数量关系,请直接写出结果.
分析:(1)①根据题意可判断△ABC为等腰直角三角形,据此即可推断∠C=45°,进而可知∠EDB=22.5°.然后求出∠EBF的度数.
②根据题意证明△BEF∽△DEB,然后利用相似三角形的性质,得到BE与FD的数量关系.
(2)首先证明△GBN∽△FDN,利用三角形相似的性质得到BE与FD的数量关系.
解答:解:(1)①∵AB=AC∠A=90°
∴∠ABC=∠C=45°
∵∠EDB=
1
2
∠C
∴∠EDB=22.5°
∵BE⊥DE
∴∠EBD=67.5°
∴∠EBF=67.5°-45°=22.5°,
故答案为:22.5;
②在△BEF和△DEB中
∵∠E=∠A=90°
∠EBF=∠EDB=22.5°
∴△BEF∽△DEB
如图:作BG平分∠ABC,交DE于G点,
∴BG=GD△BEG是等腰直角三角形
设EF=x,BE=y,
则:BG=GD=
2
y,
FD=
2
y+y-x,
∵△BEF∽△DEB
x
y
=
y
y+
2
y

得:x=(
2
-1)y,
∴FD=2BE;
(2)过点D作DG∥AC,交BE的延长线于点G,与BA交于点N,
∵DG∥AC,
∴∠GDB=∠C,
∵∠EDB=
1
2
∠C,
∴∠EDB=∠GDE,
∵BE⊥DE,
∴∠BED=∠DEG,
DE=DE,
∴△DEG≌△DEB,
∴BE=
1
2
GB,∠BND=∠GNB=90°,∠EBF=∠NDF,
∴△GBN∽△FDN,
GB
FD
=
NB
ND
,即
BE
FD
=
BN
2DN

又∵DG∥AC,
∴△BND∽△BAC,
BN
AB
=
DN
CA

BN
DN
=
AB
AC
=k,
BE
FD
=
k
2

∴FD=
2
k
BE.
点评:本题考查的是相似三角形的判定与性质,(1)利用等腰直角三角形的性质进行判定和计算.(2)结合图形利用三角函数和相似三角形进行计算求出线段间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•温州模拟)2012年5月13日为母亲节,某校结合学生实际,开展了形式多样的感恩教育活动.下面图1,图2分别是该校调查部分学生是否知道母亲生日情况的扇形统计图和频数分布直方图.

根据上图信息,解答下列问题:
(1)被调查的学生中,记不清母亲生日情况的学生有
30
30
人;
(2)本次被调查的学生总人数有
100
100
,并补全频数分布直方图2;
(3)若这所学校共有学生2400人,已知被调查的学生中,知道母亲生日的女生人数是男生人数的2倍,请你通过计算估计该校知道母亲生日的女生和男生分别有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州模拟)如图所示,小杨在处州公园的A处正面观测电子屏幕,测得屏幕上端C处的仰角为27°,接着他正对电子屏幕方向前进7m到达B处,又测得该屏幕上端C处的仰角为45°.已知电子屏幕的下端离开地面距离DE为4m,小杨的眼睛离地面1.60m,电子屏幕的上端与墙体的顶端平齐.求电子屏幕上端与下端之间的距离CD(结果精确到0.1m,参考数据:
2
≈1.41,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州模拟)不等式组
-x+1>0
x+1≥0
 的解集在数轴上表示正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州模拟)如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•温州模拟)已知二次函数y=-2(x-1)2+4,则(  )

查看答案和解析>>

同步练习册答案