精英家教网 > 初中数学 > 题目详情

如图1,四边形ABCD中,∠ABC=2∠ADC=2α,点E、F分别在CB、CD的延长线上,且EB=AB+AD,∠AEB=∠FAD.
(1)猜想线段AE、AF的数量关系,并证明你的猜想;
(2)若将“EB=AB+AD”改为“EB=AB+kAD(k为常数,且k>0)”,其他条件不变(如图2),求数学公式的值(用含k、α的式子表示).

解:(1)猜想:AE=AF.
证明:在EB上取点G,使得GB=AB,连接AG,
∵∠ABC=2∠ADC=2α,
∴∠AGB=∠GAB=∠ABC=α,
∴∠EGA=180°-α=180°-∠ADC=∠ADF,
∵EB=AB+AD,
∴EG=AD,
在△AEG和△FAD中,

∴△AEG≌△FAD(ASA),
∴AE=AF;

(2)在EB上取点G,使得GB=AB,连接AG,
同理可得∠EGA=∠ADF,
∵∠AEG=∠FAD,
∴△AEG∽△FAD,

∵EB=AB+kAD,
作BH⊥AG于点H,
∴AH=AB•cosα,
=AB•cosα,
=
分析:(1)首先在EB上取点G,使得GB=AB,连接AG,易证得∠EGA=∠ADF,由EB=AB+AD,可证得BG=AD,继而由ASA证得△AEG≌△FAD,则可得AE=AF;
(2)首先在EB上取点G,使得GB=AB,连接AG,易证得△AEG∽△FAD,然后由相似三角形的对应边成比例,证得,再作BH⊥AG于点H,即可求得的值.
点评:此题考查了相似三角形的判定与性质、等腰三角形的性质、全等三角形的判定与性质以及三角函数的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂精英家教网足分别为E、F,得四边形DECF,设DE=x,DF=y.
(1)含y的代数式表示AE;
(2)y与x之间的函数关系式,并求出x的取值范围;
(3)设四边形DECF的面积为S,x在什么范围时s随x增大而增大.x在什么范围时s随x增大而减小,并画出s与x图象;
(4)求出x为何值时,面积s最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的中线,AE=EF=FC,BE、AD相交于点G,下列4个结论:①DF∥GE;②DF:BG=2:3;③AG=GD;④S△BGD=S四边形EFDG;其中正确的有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在四边形ABC中,AD=BC,AB=CD.
求证:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中数学 来源:浙江省同步题 题型:证明题

已知:如图,在四边形ABC中,AD=BC,AB=CD.求证:AB∥CD,AD∥BC.

查看答案和解析>>

同步练习册答案