£¨2012•ÎâÖÐÇøÈýÄ££©¼ºÖªµãP£¨2£¬3£©ÊÇ·´±ÈÀýº¯Êýy=
k
x
ͼÏóÉϵĵ㣮
£¨1£©Çó¹ýµãPÇÒÓë·´±ÈÀýº¯Êýy=
k
x
ͼÏóÖ»ÓÐÒ»¸ö¹«¹²µãµÄÖ±ÏߵĽâÎöʽ£»
£¨2£©QÊÇ·´±ÈÀýº¯Êýy=
k
x
ͼÏóÔÚµÚÈýÏóÏÞÕâÒ»·ÖÖ§ÉϵĶ¯µã£¬¹ýµãQ×÷Ö±ÏßʹÆäÓë·´±ÈÀýº¯Êýy=
k
x
ͼÏóÖ»ÓÐÒ»¸ö¹«¹²µã£¬ÇÒÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC¡¢DÁ½µã£¬É裨1£©ÖÐÇóµÃµÄÒ»Ö±ÏßÓëxÖá¡¢yÖá·Ö±ð½»ÓÚA¡¢BÁ½µã£®
¢ÙÊÔÅжÏAD¡¢BCµÄλÖùØϵ£»
¢Ú̽Ë÷µ±ËıßÐÎABCDÃæ»ý×îСʱ£¬ËıßÐÎABCDµÄÐÎ×´£®
·ÖÎö£º£¨1£©°ÑPµÄ×ø±ê´úÈë¼´¿ÉÇó³ö·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬µÃ³öÖ±Ïßx=2ºÍÖ±Ïßy=3·ûºÏÌâÒ⣬ÉèµÚÈýÌõÖ±Ïß½âÎöʽΪy=ax+b£¬°ÑP£¨2£¬3£©´úÈëµÃ³öy=kx+3-2k£¬ÁªÁ¢Ö±ÏßÓë·´±ÈÀý½âÎöʽµÃ³ö·½³Ìkx2+£¨3-2k£©x-6=0£¬¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵÇó³ök£¬¼´¿ÉÇó³öÖ±ÏߵĽâÎöʽ£»
£¨2£©£©¢ÙÓÉ£¨1£©Çó³öµÄÖ±Ïßy=-
3
2
x+6£¬Çó³öAºÍBµÄ×ø±ê£¬µÃ³öOA=4£¬OB=6£¬ÉèÖ±ÏßCDµÄ½âÎöʽΪy=mx+n£¬µÃ³ö·½³Ì×é
y=mx+n
y=
6
x
£¬ÏûÈ¥yÕûÀíºóÇó³ö-
n2
m
=24£¬Çó³öOC•OD=OA•OB£¬µÃ³ö
OA
OC
=
OD
OB
£¬¼´¿ÉµÃ³öƽÐУ»¢ÚÉèOC=t£¬ÔòOD=
24
r
£¬¸ù¾ÝSËıßÐÎABCD=S¡÷BCD+S¡÷BDAµÃ³öS=3t+
48
t
+24£¬»¯³É¶¥µãʽ¼´¿ÉÇó³öt£¬¸ù¾ÝÁâÐεÄÅж¨ÍƳö¼´¿É£®
½â´ð£º£¨1£©½â£º½«PµÄ×ø±ê´úÈë·´±ÈÀý½âÎöʽµÃ£º3=
k
2
£¬¼´k=6£¬
Ôò·´±ÈÀýº¯Êý½âÎöʽΪy=
6
x
£¬
ÏÔȻֱÏßx=2ÓëÖ±Ïßy=3Óë·´±ÈÀýº¯ÊýͼÏóÖ»ÓÐÒ»¸ö½»µã£¬Âú×ãÌâÒ⣻
ÉèµÚÈýÌõÖ±Ïß½âÎöʽΪy=ax+b£¬
¡ß°ÑP£¨2£¬3£©´úÈëµÃ£º3=2k+b£¬
¼´b=3-2k£¬
¡ày=kx+3-2k£¬
ÁªÁ¢Ö±ÏßÓë·´±ÈÀý½âÎöʽµÃ£º
y=kx+3-2k
y=
6
x
£¬
ÏûÈ¥yÕûÀíµÃ£ºkx2+£¨3-2k£©x-6=0£¬
ÓÉÌâÒâµÃµ½·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù£¬µÃµ½¡÷=£¨3-2k£©2+24k=£¨2k+3£©2=0£¬
½âµÃ£ºk=-
3
2
£¬
¹ÊÂú×ãÌâÒâµÄµÚÈýÌõÖ±ÏßΪy=-
3
2
x+6£»

£¨2£©¢ÙÓÉ£¨1£©Çó³öµÄÖ±Ïßy=-
3
2
x+6£¬Áîx=0£¬µÃµ½y=6£»Áîy=0£¬µÃµ½x=4£¬
ÔòA£¨4£¬0£©£¬B£¨0£¬6£©£¬¼´OA=4£¬OB=6£¬
ÉèÖ±ÏßCDµÄ½âÎöʽΪy=mx+n£¬
Ôò
y=mx+n
y=
6
x
Ö»ÓÐÒ»¸ö½â£¬
ÏûÈ¥yÕûÀíµÃ£ºmx2+nx-6=0£¬
¡÷=n2+24m=0£¬
-
n2
m
=24£¬
OC•OD=
n
m
•£¨-n£©=24=OA•OB£¬¼´
OA
OC
=
OD
OB
£¬
AD¡ÎBC£»
¢ÚÉèOC=t£¬ÔòOD=
24
t
£¬
SËıßÐÎABCD=S¡÷BCD+S¡÷BDA=
1
2
¡Á£¨6+
24
t
£©¡Ár+
1
2
¡Á£¨6+
24
t
£©¡Á4
=3t+
48
t
+24
=3£¨
t
-
4
t
£©2+48£¬
Ôòµ±
t
-
4
t
=0£¬¼´t=4ʱ£¬ËıßÐÎABCDÃæ»ý×îС£¬
´ËʱOA=OC=4£¬OB=OD=6£¬ÓÖAC¡ÍBD£¬
¹ÊËıßÐÎABCDΪÁâÐΣ®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÈý½ÇÐεÄÃæ»ý£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬Æ½ÐÐÏßµÄÐÔÖʺÍÅж¨£¬ÁâÐεÄÅж¨£¬¸ùµÄÅбðʽ£¬·½³Ì×éµÈ֪ʶµã£¬Ö÷Òª¿¼²éѧÉú×ÛºÏÔËÓÃÐÔÖʽøÐмÆËãµÄÄÜÁ¦£¬±¾Ìâ×ÛºÏÐԱȽÏÇ¿£¬ÄѶÈÆ«´ó£¬¶ÔѧÉúÌá³ö½Ï¸ßµÄÒªÇó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÎâÖÐÇøÈýÄ££©2012Äê4Ô·ݣ¬Ä³ÇøijһÖÜ¿ÕÆøÖÊÁ¿±¨¸æÖÐijÏîÎÛȾָÊýµÄÊý¾ÝÈçϱíËùʾ£¬Õâ×éÊý¾ÝµÄ¼«²îÊÇ£¨¡¡¡¡£©
¼ì²âʱ¼ä ÖÜÒ»   Öܶþ   ÖÜÈý   ÖÜËÄ   ÖÜÎå   ÖÜÁù   ÖÜÈÕ
ÎÛȾָÊý   21   22   21   24   20   22    21

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÎâÖÐÇøÈýÄ££©Èçͼ£¬Ò»ÖÖµç×ÓÓÎÏ·£¬µç×ÓÆÁÄ»ÉÏÓÐÒ»ÕýÁù±ßÐÎABCDEF£¬µãPÑØÖ±ÏßAB´ÓÓÒÏò×óÒƶ¯£¬µ±³öÏÖ£ºµãPÓëÕýÁù±ßÐÎÁù¸ö¶¥µãÖеÄÖÁÉÙÁ½¸ö¶¥µã¹¹Ôì³ÉµÈÑüÈý½ÇÐÎʱ£¬¾Í»á·¢³ö¾¯±¨£¬ÔòÖ±ÏßABÉϻᷢ³ö¾¯±¨µÄµãPÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÎâÖÐÇøÈýÄ££©ÈôÁ½¸öÏàËÆÈý½ÇÐεÄÏàËƱÈΪ1£º4£¬ÔòËüÃǵÄÖܳ¤±ÈΪ
1£º4
1£º4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÎâÖÐÇøÈýÄ££©Èôx=1£¬y=2ÊÇ·½³Ì×é
2ax+y=4
x+2y=b
µÄ½â£¬ÔòÓÐÐòʵÊý¶Ô£¨a£¬b£©=
£¨1£¬5£©
£¨1£¬5£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÎâÖÐÇøÈýÄ££©Ò»°ãµØ£¬ÉèÊÔÑé½á¹ûÂäÔÚij¸öÇøÓòSÖÐÿһµãµÄ»ú»á¾ùµÈ£¬ÓÃA±íʾ¡°ÊÔÑé½á¹ûÂäÔÚSÖеÄÒ»¸öСÇøÓòMÖС±Õâ¸öʼþ£¬ÄÇôʼþA·¢ÉúµÄ¸ÅÂÊΪP£¨A£©=
MµÄÃæ»ý
SµÄÃæ»ý
£¬ÇëÀûÓÃÉÏÊö×ÊÁϽâ¾öÎÊÌ⣺±ß³¤Îª2µÄÕý·½ÐÎÄÚÓÐÒ»¸ö°ë¾¶Îª1µÄ°ëÔ²£¬ÏòÕý·½ÐÎÄÚÈÎͶһµã£¨¼ÙÉè¸ÃµãÂäÔÚÕý·½ÐÎÄÚµÄÿһµãµÄ»ú»á¾ùµÈ£©£¬Ôò¸ÃµãÂäÔÚ°ëÔ²ÄڵĸÅÂÊΪ
1
8
¦Ð£®
1
8
¦Ð£®
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸