ÒÑÖª£ºµãA¡¢B·Ö±ðÔÚÖ±½Ç×ø±êϵµÄx¡¢yÖáµÄÕý°ëÖáÉÏ£¬OÊÇ×ø±êÔ­µã£¬µãCÔÚÉäÏßAOÉÏ£¬µãDÔÚÏ߶ÎOBÉÏ£¬Ö±ÏßADÓëÏ߶ÎBCÏཻÓÚµãP£¬É製a£¬£½b£¬£½k£®

(1)Èçͼ1£¬µ±a£½£¬b£½1ʱ£¬ÇëÇó³ökµÄÖµ£»

(2)µ±a£½£¬b£½1ʱ(Èçͼ2)£¬ÇëÇó³ökµÄÖµ£»µ±a£½£¬b£½Ê±£¬k£½________£»

(3)¸ù¾ÝÒÔÉÏ̽Ë÷Ñо¿£¬ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺¢ÙÇëÖ±½Óд³öÓú¬a£¬b´úÊýʽ±íʾk£½________£»¢ÚÈôµãA(8£¬0)£¬µãB(0£¬6)£¬C(£­2£¬0)£¬Ö±ÏßADΪ£ºy£½£­x£«4£¬Ôòk£½________£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºµãA¡¢B·Ö±ðÔÚÖ±½Ç×ø±êϵµÄx¡¢yÖáµÄÕý°ëÖáÉÏ£¬OÊÇ×ø±êÔ­µã£¬µãCÔÚÉäÏßAOÉÏ£¬µãDÔÚÏ߶ÎOBÉÏ£¬Ö±ÏßADÓëÏ߶ÎBCÏཻÓÚµãP£¬Éè
AC
AO
=a£¬
BD
DO
=b£¬
CP
PB
=k£®
£¨1£©Èçͼ1£¬µ±a=
1
2
£¬b=1ʱ£¬ÇëÇó³ökµÄÖµ£»
£¨2£©µ±a=
1
3
£¬b=1ʱ£¨Èçͼ2£©£¬ÇëÇó³ökµÄÖµ£»µ±a=
3
2
£¬b=
1
5
ʱ£¬k=
15
2
15
2
£»
£¨3£©¸ù¾ÝÒÔÉÏ̽Ë÷Ñо¿£¬ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺¢ÙÇëÖ±½Óд³öÓú¬a£¬b´úÊýʽ±íʾk=
a
b
a
b
£»¢ÚÈôµãA£¨8£¬0£©£¬µãB£¨0£¬6£©£¬C£¨-2£¬0£©£¬Ö±ÏßADΪ£ºy=-
1
2
x+4£¬Ôòk=
5
2
5
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º¾«±à½Ì²ÄÈ«½â¡¡Êýѧ¡¡¾ÅÄ꼶Éϲᡡ(ÅäËÕ¿Æ°æ) ËÕ¿Æ°æ ÌâÐÍ£º047

Èçͼ£¬ÒÑÖª£ºµãB¡¢C·Ö±ðÔÚ¡ÏMANµÄÁ½±ßÉÏ£¬BD¡ÍAN£¬CE¡ÍAM£¬´¹×ã·Ö±ðΪD¡¢E£¬BD¡¢CEÏཻÓÚµãF£¬ÇÒBF£½CF£®

ÇóÖ¤£ºµãFÔÚ¡ÏMANµÄƽ·ÖÏßÉÏ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012½ìÕã½­¶«ÑôÎâÓî³õ¼¶ÖÐѧÖп¼Ä£ÄâÊýѧÊÔ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª£ºµãA¡¢B·Ö±ðÔÚÖ±½Ç×ø±êϵµÄx¡¢yÖáµÄÕý°ëÖáÉÏ£¬OÊÇ×ø±êÔ­µã£¬µãCÔÚÉäÏßAOÉÏ£¬µãDÔÚÏ߶ÎOBÉÏ£¬Ö±ÏßADÓëÏ߶ÎBCÏཻÓÚµãP£¬Éè=a£¬ =b£¬=k¡£
£¨1£©Èçͼ1£¬µ±a=£¬b=1ʱ£¬ÇëÇó³ökµÄÖµ£»
£¨2£©µ±a=£¬b=1ʱ(Èçͼ2)£¬ÇëÇó³ökµÄÖµ£»µ±a=£¬b=ʱ£¬k=¡ø£»
£¨3£©¸ù¾ÝÒÔÉÏ̽Ë÷Ñо¿£¬ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺¢ÙÇëÖ±½Óд³öÓú¬a£¬b´úÊýʽ±íʾk=¡ø£»¢Ú ÈôµãA(8,0)£¬µãB£¨0£¬6£©£¬C£¨£­2£¬0£©£¬Ö±ÏßADΪ£ºy=£­x+4£¬Ôòk=¡ø¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2012ÄêÕã½­Ê¡½ð»ªÊÐÖп¼ÊýѧģÄâÊÔ¾í£¨Æߣ©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª£ºµãA¡¢B·Ö±ðÔÚÖ±½Ç×ø±êϵµÄx¡¢yÖáµÄÕý°ëÖáÉÏ£¬OÊÇ×ø±êÔ­µã£¬µãCÔÚÉäÏßAOÉÏ£¬µãDÔÚÏ߶ÎOBÉÏ£¬Ö±ÏßADÓëÏ߶ÎBCÏཻÓÚµãP£¬Éè=a£¬=b£¬=k£®
£¨1£©Èçͼ1£¬µ±a=£¬b=1ʱ£¬ÇëÇó³ökµÄÖµ£»
£¨2£©µ±a=£¬b=1ʱ£¨Èçͼ2£©£¬ÇëÇó³ökµÄÖµ£»µ±a=£¬b=ʱ£¬k=______£»
£¨3£©¸ù¾ÝÒÔÉÏ̽Ë÷Ñо¿£¬ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺¢ÙÇëÖ±½Óд³öÓú¬a£¬b´úÊýʽ±íʾk=______£»¢ÚÈôµãA£¨8£¬0£©£¬µãB£¨0£¬6£©£¬C£¨-2£¬0£©£¬Ö±ÏßADΪ£ºy=-x+4£¬Ôòk=______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011-2012ѧÄêÕã½­¶«ÑôÎâÓî³õ¼¶ÖÐѧÖп¼Ä£ÄâÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÒÑÖª£ºµãA¡¢B·Ö±ðÔÚÖ±½Ç×ø±êϵµÄx¡¢yÖáµÄÕý°ëÖáÉÏ£¬OÊÇ×ø±êÔ­µã£¬µãCÔÚÉäÏßAOÉÏ£¬µãDÔÚÏ߶ÎOBÉÏ£¬Ö±ÏßADÓëÏ߶ÎBCÏཻÓÚµãP£¬Éè=a£¬ =b£¬=k¡£

£¨1£©Èçͼ1£¬µ±a=£¬b=1ʱ£¬ÇëÇó³ökµÄÖµ£»

£¨2£©µ±a=£¬b=1ʱ(Èçͼ2)£¬ÇëÇó³ökµÄÖµ£»µ±a=£¬b=ʱ£¬k= ¡ø£»

£¨3£©¸ù¾ÝÒÔÉÏ̽Ë÷Ñо¿£¬ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺¢ÙÇëÖ±½Óд³öÓú¬a£¬b´úÊýʽ±íʾk=¡ø£»¢Ú ÈôµãA(8,0)£¬µãB£¨0£¬6£©£¬C£¨£­2£¬0£©£¬Ö±ÏßADΪ£ºy=£­x+4£¬Ôòk=¡ø¡£

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸