分析 先把括号内通分,再把分子分母因式分解,接着把除法运算化为乘法运算后约分得到原式=$\frac{a+b}{a-b}$,然后根据零指数幂与特殊角的三角函数值计算出a和b的值,再把a和b的值代入原式=$\frac{a+b}{a-b}$中计算即可.
解答 解:原式=$\frac{(a+b)(a-b)}{a}$÷$\frac{{a}^{2}-2ab+{b}^{2}}{a}$
=$\frac{(a+b)(a-b)}{a}$÷$\frac{(a-b)^{2}}{a}$
=$\frac{(a+b)(a-b)}{a}$•$\frac{a}{(a-b)^{2}}$
=$\frac{a+b}{a-b}$,
当a=1+2×$\frac{\sqrt{2}}{2}$=1+$\sqrt{2}$,b=1-$\sqrt{2}$,原式=$\frac{1+\sqrt{2}+1-\sqrt{2}}{1+\sqrt{2}-1+\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
点评 本题考查了分式的化简计算:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了零指数幂与特殊角的三角函数值.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com