精英家教网 > 初中数学 > 题目详情
20.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,以下两个结论:①AF=DE;②AF⊥DE都成立.试探究:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF时,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点时,求证:四边形MNPQ是正方形.

分析 (1)根据正方形的性质证明△DEC≌△AFD即可知道结论成立.
(2)由已知得四边形ABCD为正方形,证明Rt△ADF≌Rt△ECD,然后推出∠ADE+∠DAF=90°;进而得出AF⊥DE;
(3)首先根据题意证明四边形MNPQ是菱形,然后又因为AF⊥DE,得出四边形MNPQ为正方形.

解答 (1)解:如图1,∵在△DEC和△AFD中
$\left\{\begin{array}{l}{DC=AD}\\{∠ECD=∠ADC}\\{EC=DF}\end{array}\right.$,
∴△DEC≌△AFD(SAS);
∴结论①、②都仍然成立;

(2)解:上述结论①,②仍然成立,
理由:如图2,

∵四边形ABCD为正方形,
∴AD=DC,∠BCD=∠ADC=90°                   
在△ADF和△DCE中,$\left\{\begin{array}{l}DF=CE\\∠ADC=\\ AD=CD\end{array}\right.∠BCD=90°$,
∴△ADF≌△DCE(SAS),
∴AF=DE,∠EDC=∠DAF,
∵∠ADG+∠EDC=90°,
∴∠ADG+∠DAF=90°,
∴∠AGD=90°,
即AF⊥DE;

(3)证明:如图3,

设MQ,DE分别交AF于点G,O,PQ交DE于点H,
∵点M,N,P,Q分别为AE,EF,FD,AD的中点,
∴MQ、PN分别是△AED、△FED的中位线,
∴MQ=PN=$\frac{1}{2}$DE,MQ∥DE∥PN;
同理PQ=MN=$\frac{1}{2}$AF,PQ∥AF,
∴MQ∥PN,MQ=PN,
∴四边形MNPQ是平行四边形,
∵AF=DE,∴MQ=PQ,
∴四边形MNPQ是菱形,
∵AF⊥DE,
∴∠AOD=90°,
∴∠HQG=∠AOD=90°,
∴四边形MNPQ是正方形.

点评 此题主要考查了四边形综合、全等三角形的判定于性质、正方形的判定以及正方形的性质等知识,正确应用全等三角形的判定与性质是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.观察下列等式:
21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22016-1的末位数字是9.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知如图,抛物线C1:y=-x2+4x+1的顶点A在第一象限,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为平行四边形,则平行四边形ABCP的面积为8.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知圆锥的底面直径为2cm,母线长为3cm,则其侧面积为3πcm2.(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,tan∠ACB=2,将矩形OABC绕点O按顺时针方向旋转90°后得到矩形ODEF.点A的对应点为点D,点B的对应点为点E,点C的对应点为点F,抛物线y=ax2+bx+2的图象过点A,C,F.
(1)求抛物线所对应函数的表达式;
(2)在边DE上是否存在一点M,使得以O,D,M为顶点的三角形与△ODE相似,若存在,求出经过M点的反比例函数的表达式,若不存在,请说明理由;
(3)在x轴的上方是否存在点P,Q,使以O,F,P,Q为顶点的平行四边形的面积是矩形OABC面积的2倍,且点P在抛物线上,若存在,请求出P,Q两点的坐标;若不能存在,请说明理由;
(4)在抛物线的对称轴上是否存在一点H,使得HA-HC的值最大,若存在,直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,已知E为?ABCD的边DC延长线上的一点,且CE=CD,联结AE分别交BC、BD于点F、G.那么$\frac{DG}{BD}$=$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点.
(1)求抛物线的解析式;
(2)点M是线段BC上的点(不与B,C重合),过点M作MN∥y轴交抛物线于点N,若点M的横坐标为m,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值,若不存在,说明理由.
(3)在(2)的条件下,直线MN交x轴于点D,E(t,0)是x轴上一动点,F是线段ND上一点,当△BNC的面积最大时,是否存在t,使∠EFC=90°?若存在,求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.
(1)求证:CE=BD;
(2)若AB=4,求AF的长度;
(3)求sin∠EFC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,当∠MAN绕点A旋转到BM=DN时(如图1),则

(1)线段BM、DN和MN之间的数量关系是BM+DN=MN;
(2)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
(3)当∠MAN绕点A旋转到(如图3)的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.

查看答案和解析>>

同步练习册答案