精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,分别以的边向外作正方形,连接ECBF,过BM,交ACN,下列结论:

,其中正确的是

A.B.C.D.

【答案】D

【解析】

利用全等三角形的判定和性质、平行线的性质、等高模型即可一一判断;

连接BEAM
AB=AEAF=AC,∠EAB=CAF
∴∠BAF=EAC
∴△BAF≌△EACSAS),故①正确,

AECD
SAEC=SABE
S正方形ABDE=2SABE
S四边形ABDE=2SAEC;故②正确;
BMFGAFFG
AFBM
S矩形AFMN=2SAFM=2SAFB,故③正确,
∵∠ABC=ANB=90°,∠BAN=BAC
∴△ABN∽△ACB
AB2=ANAC
AF=AC
AB2=ANAF
S正方形ABDE=S四边形AFMN,故④正确,
故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.

a. 实心球成绩的频数分布表如下:

分组

频数

2

m

10

6

2

1

b. 实心球成绩在这一组的是:

a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3

c. 一分钟仰卧起坐成绩如下图所示:

根据以上信息,回答下列问题:

1 ①表中m的值为__________

②一分钟仰卧起坐成绩的中位数为__________

2)若实心球成绩达到7.2米及以上时,成绩记为优秀.

①请估计全年级女生实心球成绩达到优秀的人数;

②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:

女生代码

A

B

C

D

E

F

G

H

实心球

8.1

7.7

7.5

7.5

7.3

7.2

7.0

6.5

一分钟仰卧起坐

*

42

47

*

47

52

*

49

其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了参加荆州市中小学生首届诗词大会,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:

班级

平均分

中位数

众数

方差

八(1)

85

b

c

22.8

八(2)

a

85

85

19.2

(1)直接写出表中a,b,c的值;

(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y=ax2+bx+c(其中a,b,c为常数,且a≠0),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是(  )

x

﹣1

0

1

2

y

﹣2

2.5

4

2.5

A. a<0

B. 一元二次方程ax2+bx+c﹣5=0没有实数根

C. 当x=3时y=﹣2

D. 一元二次方程ax2+bx+c=0有一根比3大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋中有完全相同的三个小球,把它们分别标号为123. 小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球, 记下标号. 若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.

1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;

2)请判断这个游戏是否公平,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的一种产品按照质量由高到低分为ABCD四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:

根据以上信息,下列推断合理的是(  )

A.改进生产工艺后,A级产品的数量没有变化

B.改进生产工艺后,B级产品的数量增加了不到一倍

C.改进生产工艺后,C级产品的数量减少

D.改进生产工艺后,D级产品的数量减少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某部门为新的生产线研发了一款机器人,为了了解它的操作技能情况,在相同条件下与人工操作进行了抽样对比.过程如下,请补充完整.

收集数据对同一个生产动作,机器人和人工各操作20次,测试成绩(十分制)如下:

机器人

8.0

8.1

8.1

8.1

8.2

8.2

8.3

8.4

8.4

9.0

9.0

9.0

9.1

9.1

9.4

9.5

9.5

9.5

9.5

9.6

人工

6.1

6.2

6.6

7.2

7.2

7.5

8.0

8.2

8.3

8.5

9.1

9.6

9.8

9.9

9.9

9.9

10

10

10

10

整理、描述数据按如下分段整理、描述这两组样本数据:

成绩x

人数

生产方式

6≤x7

7≤x8

8≤x9

9≤x≤10

机器人

0

0

9

11

人工

   

   

   

(说明:成绩在9.0分及以上为操作技能优秀,8.08.9分为操作技能良好,6.07.9分为操作技能合格,6.0分以下为操作技能不合格)

分析数据两组样本数据的平均数、中位数、众数和方差如下表所示:

平均数

中位数

众数

方差

机器人

8.8

 9.0 

9.5

0.333

人工

8.6

 8.8 

10

1.868

得出结论

1)如果生产出一个产品,需要完成同样的操作200次,估计机器人生产这个产品达到操作技能优秀的次数为   

2)请结合数据分析机器人和人工在操作技能方面各自的优势:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.

(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是    

(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=x2与双曲线y=(k≠0)相交于AB两点,且点A的横坐标是3

(1)k的值;

(2)过点P(0n)作直线,使直线与x轴平行,直线与直线y=x2交于点M,与双曲线y= (k≠0)交于点N,若点MN右边,求n的取值范围.

查看答案和解析>>

同步练习册答案