精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

解:(1)由题意得:点B的坐标为(0,c),其中c>0,OB=c,
∵OA=OB,点A在x轴的负半轴上,
∴点A的坐标为(-c,0),
∵点A在抛物线y=-x2+bx+c上,
∴0=-c2-bc+c,
∵c>0,
∴两边都除以c得:0=-c-b+1,
b+c=1,
答:b+c的值是1.

(2)解:∵四边形OABC是平行四边形
∴BC=AO=c,
又∵BC∥x轴,点B的坐标为(0,c)
∴点C的坐标为(c,c),
又点C在抛物线上,
∴c=-c2+bc+c
∴b-c=0或c=0(舍去),
又由(1)知:b+c=1,

∴抛物线的解析式为
答:抛物线的解析式是y=-x2+x+

(3)解:过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N,PM交BC的延长线于H,

∵由(2)知BC∥x轴,PM⊥x轴,
∴PH⊥BC,
∵BP平分∠OBC,PN⊥BO,PH⊥BC,
∴PN=PH,
设点P的坐标为
∴PN=x,ON=PM=-(-x2+x+
∴BN=BO+ON=-(-x2+x+),PN=x,
∴BN=PN,即
解得:或x=0,
当x=时,-x2+x+=-1,
∴点P的坐标为(1.5,-1),
当x=0时,-x2+x+=,、
∴点P的坐标为(0,),此时P和B重合,舍去,
答:点P的坐标是(1.5,-1).
分析:(1)根据已知得到B(0,c),A(-c,0),把A的坐标代入解析式即可求出答案;
(2)由平行四边形OABC得到BC=AO=c,点B的坐标为(0,c),根据平行四边形的性质得到C的坐标,把C的坐标代入解析式和b+c=1组成方程组,即可求出b、c的值,即得到抛物线的解析式;
(3)过点P作PM⊥y轴,PN⊥BC,垂足分别为M、N,根据角平分线的性质得到PM=PN,设点P的坐标为,代入解析式即可求出P的坐标.
点评:本题主要考查了用待定系数法求二次函数的解析式,二次函数上点的坐标特征,平行四边形的性质,角平分线的性质,解一元二次方程等知识点,能运用题中隐含的条件求二次函数的解析式是解此题的关键,此题是一个综合性比较强的题目,有一定的难度,但题型较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案