【题目】如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
证明:(1)BD=DC;(2)DE是⊙O切线.
【答案】详见解析
【解析】
试题分析:(1)连接AD,由于AB是直径,那么∠ADB=90°,而AB=AC,根据等腰三角形三线合一定理可知BD=CD;
(2)连接OD,由于∠BAC=2∠BAD,∠BOD=2∠BAD,那么∠BAC=∠BOD,可得OD∥AC,而DE⊥AC,易证∠ODB=90°,从而可证DE是⊙O切线.
试题解析:如右图所示,
(1)连接AD,∵AB是直径,∴∠ADB=90°,又∵AB=AC,∴BD=CD;
(2)连接OD,∵∠BAC=2∠BAD,∠BOD=2∠BAD,∴∠BAC=∠BOD,∴OD∥AC,
又∵DE⊥AC,∴∠AED=90°,∴∠ODB=∠AED=90°,∴DE是⊙O的切线.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com