精英家教网 > 初中数学 > 题目详情
已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图(1)连接AF、CE,判断四边形AFCE的形状并说明理由,再求AF的长;
(2)如图(2)动点P、Q分别从A、E两点同时出发,点P以每秒5cm的速度沿A→F→B→A运动,点Q以每秒→4cm沿E→C→D→E匀速运动一周,一点到达终点另一点也中止运动.若运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
分析:(1)先证明四边形ABCD为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求AF的长;
(2)分情况讨论可知,P点在BF上,Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
解答:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE.
∵EF垂直平分AC,
∴OA=OC.
∵在△AOE和△COF中,
∠CAD=∠ACB
∠AEF=∠CFE
OA=OC

∴OE=OF(AAS).
∵EF⊥AC,
∴四边形AFCE为菱形.
设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,由勾股定理,得
16+(8-x)2=x2
解得:x=5,
∴AF=5

(2)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;
同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.
∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,
∴以A,C,P,Q四点为顶点的四边形是平行四边形时,
∴PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,
解得:t=
4
3

∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=
4
3
秒.
点评:本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:矩形ABCD中,AB=1,点M在对角线AC上,直线l过点M且与AC垂直,与AD相交于点E.
(1)如果直线l与边BC相交于点H(如图1)AM=
1
3
AC且AD=a,求的AE长(用含a的代数式表示);
(2)在(1)中,直线l把矩形分成两部分的面积比为2:5,求a的值;
(3)若AM=
1
4
AC,且直线l经过点B(如图2),求AD的长;
(4)如果直线l分别与边AD,AB相交于点E,F,AM=
1
4
AC,设AD的长为x,△AEF的面积为y,求y与x的函数关系式,并指出x的取值范围(求x的取值范围可不写过程).精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:矩形ABCD中,AD=2,点E、F分别在边CD、AB上,且四边形AECF是菱形精英家教网,tan∠DAE=
12
.求:
(1)DE的长;
(2)菱形AECF的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

23、已知在矩形ABCD中,AB=3,BC=6,如果以AD为直径作圆,那么与这个圆相切的矩形的边共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在矩形ABCD中.
(1)设矩形的面积为6,AD=y,AB=x(0<x≤6),写出y与x的函数关系,并在直角坐标系中画出此函数的图象.
(2)如图矩形纸片ABCD,AB=4,AD=3.折叠纸片使得AD边与对角线BD重合,折痕为DG,点A落在A′处,求△A′BG的面积与矩形ABCD的面积的比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,矩形ABCD中,延长BC至E,使BE=BD,F为DE的中点,连结AF、CF.
(1)若AB=3,AD=4,求CF的长;
(2)求证:∠ADB=2∠DAF.

查看答案和解析>>

同步练习册答案