精英家教网 > 初中数学 > 题目详情

抛物线与x轴交于A(-1,0)、B两点,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标;
(3)抛物线对称轴上是否存在一点P,使得S△PAM=3S△ACM,若存在,求出P点坐标;若不存在,请说明理由.

解:(1)设直线AC的解析式为y=kx-3,
把A(-1,0)代入得k=-3
∴直线AC的解析式为y=-3x-3
依题意知,点Q的纵坐标是-6
把y=-6代入y=-3x-3中,
解得x=1
∴点Q(1,-6)
∵点Q在抛物线的对称轴上
∴抛物线的对称轴为直线x=1
设抛物线的解析式为y=a(x-1)2+n
由题意,

解得
∴抛物线的解析式为y=(x-1)2-4.

(2)如图1,过点C作AC的垂线交抛物线于点D
交x轴于点N,则∠ACO=∠ANC
∴tan∠ANC=tan∠ACO

∵OA=1,OC=3
∴ON=9
∴点N的坐标为(9,0)
可求得直线CN的解析式为

解得
即点D的坐标为().

(3)设抛物线的对称轴交x轴于点E,依题意,得
AE=2,EM=4,
∵S△ACM=S△AOC+S梯形OCME-S△AME=1

又S△PAM=3S△ACM
∴PM=3
设P(1,m)
①当点P在点M上方时,PM=m+4=3
∴m=-1
∴P(1,-1)
②当点P在点M下方时,PM=-4-m=3
∴m=-7
∴P(1,-7)
综上所述,点P的坐标为P1(1,-1),P2(1,-7).
分析:(1)设直线AC的解析式为y=kx-3,把已知坐标代入可解k的值.
(2)依题意得出∠ACO=∠ANC,然后求出ON的值以及直线CN的解析式.最后可求出x,y的值.
(3)设抛物线的对称轴交x轴于点E,依题意,得AE,EM,AM的值.设P(1,m),分情况讨论P的坐标.
点评:本题难度较大,考查的是二次函数图象与解析式的灵活运用,一般这样题目都是作为压轴题出现,考生平时应多积累二次函数的综合知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6.
(1)求抛物线的解析式;
(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,请你求出BN的长度;
(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县一模)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m),
(1)求二次函数的解析式并写出D点坐标;
(2)点Q是线段AB上的一动点,过点Q作QE∥AD交BD于E,连结DQ,当△DQE的面积最大时,求点Q的坐标;
(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=-x2+mx+n经过点A(1,0),B(6,0).
(1)求抛物线的解析式;
(2)抛物线与y轴交于点D,求△ABD的面积;
(3)当y<0,直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+mx-
14
m2(m>0)与x轴交于A、B两点.
(1)求证:抛物线的对称轴在y轴的左侧;
(2)设抛物线与y轴交于点C,若∠ACB=90°,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当t=
52
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

同步练习册答案