精英家教网 > 初中数学 > 题目详情

【题目】如图(1),在中,.点由点出发沿方向向点匀速运动,同时点由点出发沿方向向点匀速运动,它们的速度均为.作,连接,设运动时间为(),解答下列问题:

1)设的面积为,求之间的函数关系式,并求出的最大值;

2)当的值为________________时,是等腰三角形

【答案】1()时,有最大值是;(2

【解析】

1)根据题意,判定,得出,得出AQPD含有的式子,利用面积即可列出函数关系式,然后化为顶点式,即可求出最大值;

2)分三种情况求解:①当AP=AQ时,②当AQ=QP时,③当时,由(1)中得知APAQPQ含有的式子,格局勾股定理构建一元二次方程,即可得解.

1

时,有最大值是

2

由(1)中得,

,即

①当AP=AQ时,即

②当AQ=QP时,即

(舍去)

③当时,即

(舍去)

综上,的值为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.

(1)判断直线l与⊙O的位置关系,并说明理由;

(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;

(3)在(2)的条件下,若DE=4,DF=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,点是边上的一点(不与重合),点的延长线上,且满足,连接与边交于点

1)求证:

2)如果,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级(1)班班主任对本班学生进行了我最喜欢的课外活动的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:

1)七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;

2)学校将举行书法和绘画比赛,每班需派两名学生参加,A4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A(﹣4n),B2,﹣4)是一次函数ykx+b的图象和反比例函数y的图象的两个交点.

1)求反比例函数和一次函数的解析式;

2)求直线ABx轴的交点C的坐标及△AOB的面积;

3)直接写出一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.

种类

A

B

C

D

E

F

上学方式

电动车

私家车

公共交通

自行车

步行

其他

某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

根据以上信息,回答下列问题:

(1)参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.

(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.

(3)若将ACDE这四类上学方式视为绿色出行,请估计该校每天绿色出行的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABCRtABD中,∠ABC=BAD=90°AD=BCACBD相交于点G,过点AAEDBCB的延长线于点E,过点BBFCADA的延长线于点FAEBF相交于点H

1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)

2)证明:四边形AHBG是菱形;

3)若使四边形AHBG是正方形,还需在RtABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形中,=45°,点轴上,点的中点,反比例函数的图象经过两点.

1)求的值;

2)求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作ABDE,连接AD,EC.

(1)求证:△ADC≌△ECD;

(2)若BD=CD,求证:四边形ADCE是矩形.

查看答案和解析>>

同步练习册答案