精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,已知点A(-3,6),点B,点C分别在x轴的负半轴和正半轴上,精英家教网OB,OC的长分别是方程x2-4x+3=0的两根(OB<OC).
(1)求点B,点C的坐标;
(2)若平面内有M(1,-2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD的解析式;
(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
分析:(1)解方程x2-4x+3=0,结合图形求解;
(2)过A作AH⊥x轴于H点,可证明△CAB∽△CMD.根据相似形的性质求D点坐标,运用待定系数法求MD的解析式.
(3)根据正方形的性质可直接写出存在的点Q1(3,3)或Q2(
3
2
,-
3
2
)
解答:解:(1)x2-4x+3=0,
得x=3或1.
∵OB<OC,
∴B(-1,0),C(3,0).

(2)过A作AH⊥x轴于H点,则AH=CH=6,
∴∠ACB=45°,精英家教网
同理(过M作MT⊥x轴于T点,则MT=CT=2 )可证:∠MCD=45°,
∴∠ACB=∠MCD.
又∵∠DMC=∠BAC,
∴△CAB∽△CMD,
AC
MC
=
BC
CD

在△AHC中,AC=
AH2+HC2
=6
2
,同理MC=2
2

4
DC
=
6
2
2
2

DC=
4
3

OD=3-
4
3
=
5
3
D(
5
3
,0)

设MD的解析式为y=kx+b(k≠0),则
k+b=-2
5
3
k+b=0

k=3
b=-5

∴函数解析式是:y=3x-5.
精英家教网
(3)存在.Q1(3,3)或Q2(
3
2
,-
3
2
)
点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数图象的性质和交点的意义求出相应的线段的长度或表示线段的长度,再结合具体图形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案