【题目】“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查 名学生;扇形统计图中C所对应扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
【答案】(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
【解析】
(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
(3)用“非常了解”所占的比例乘以800即可求得;
(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
(1)本次调查的学生总人数为24÷40%=60人,
扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
故答案为:60、90°;
(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
补全条形图如下:
(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
(4)画树状图为:
共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
科目:初中数学 来源: 题型:
【题目】公元3世纪,古希腊数学家丢番图(Diophantus)在其《算术》一书中设置了以下问题:已知两正整数之和为20,乘积为96,求这两个数.因为两数之和为20,所以这两个数不可能同时大于10,也不可能同时小于10,必定是一个大于10,一个小于10.根据如图所示的设法,可设一个数为,则另一个数为,根据两数之积为96,可得.请根据以上思路解决下列问题:
(1)若两个正整数之和为100,大数比小数大,根据丢番图的设法,这两个正整数可表示为____和___;
(2)请你根据丢番图的运算方法,计算的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABD和△ACE中,有下列四个等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求证栏中,使之组成一个真命题,并写出证明过程.
已知: .
求证: .
证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列语句:①-1是1的平方根。②带根号的数都是无理数。③-1的立方根是-1。④的立方根是2。⑤(-2)2的算术平方根是2。⑥-125的立方根是±5。⑦有理数和数轴上的点一一对应。其中正确的有( )
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D是这些点中的四个,且对应的位置如图所示,它们对应的数分别是a、b、c、d.
(1)若c与d互为相反数,则a________;
(2)若d2b8,那么点C对应的数是________;
(3)若abcd0,ab0求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com